

Figure 1: This figure shows the ΔE distributions of B candidates in 250 pb⁻¹ of collision data, in the mode $B \to J/\psi K^{(*)}$. Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^ \to$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The lepton, kaon and pion tracks are required to have impact parameters, |d0| and |z0| < 0.5 cm and 3.0 cm respectively. $E_{ECL}/p \geq 0.9$ is applied to select e^+ and e^- . While for selecting muons, $E_{ECL} < 0.3$ GeV and Muid ≥ 0.1 by at least one of the muons. The J/ψ and K^* candidates are selected within $3.0 \leq M_{l^+l^-} \leq 3.12 \text{ GeV}/c^2$ and $0.845 \leq M_{K\pi} \leq 0.942 \text{ GeV}/c^2$. $q\bar{q}$ background is suppressed with $R_2 \leq 0.3$. The internal document reference is BELLE2-NOTE-PH-2018-014.

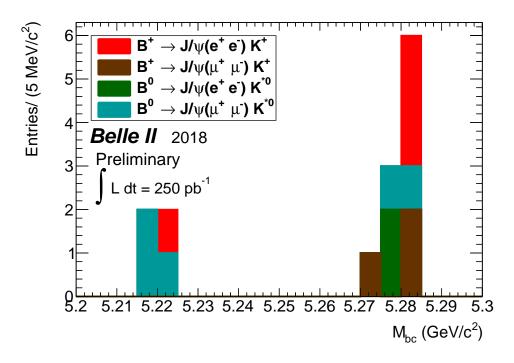


Figure 2: This figure shows the $M_{\rm bc}$ distributions of B candidates in 250 pb⁻¹ of collision data, in the mode $B \to J/\psi K^{(*)}$. Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^ \to$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The lepton, kaon and pion tracks are required to have impact parameters, |d0| and $|z0| < 0.5 {\rm cm}$ and 3.0 cm respectively. $E_{ECL}/p \ge 0.9$ is applied to select e^+ and e^- . While for selecting muons, $E_{ECL} < 0.3$ GeV and Muid ≥ 0.1 by at least one of the muons. The J/ψ and K^* candidates are selected within $3.0 \le M_{l^+l^-} \le 3.12$ GeV/ c^2 and $0.845 \le M_{K\pi} \le 0.942$ GeV/ c^2 . $q\bar{q}$ background is suppressed with $R_2 \le 0.3$. The internal document reference is BELLE2-NOTE-PH-2018-014.