

Figure 1: The $\cos \theta_{BY} = \frac{2E_B^* E_Y^* - M_B^2 - m_Y^2}{2p_B^* p_Y^*}$ distribution of $\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e$ candidates using 250 pb⁻¹ of collision data, where E_Y^* , p_Y^* , and m_Y are the CM energy, momentum, and invariant mass of the D^*e system, M_B is the nominal B mass, and E_B^* , p_B^* are the CM energy and momentum of the B, inferred from the CM machine energy. For correctly reconstructed B candidates, ignoring mismeasurements and the spread in machine energy, θ_{BY} is the CM angle between the B and Y momenta. Here the data (points with error bars) is overlaid with the combination of MC events, scaled to the same area as the data. D^0 candidates are reconstructed from $K^-\pi^+$ pairs, selected without particle identification requirements, within the invariant mass range 1.85 GeV/ $c^2 < m_{K\pi} < 1.88$ GeV/ c^2 . D^{*+} candidates are reconstructed from a D^0 candidate and a π^+ candidate track, with the invariant-mass difference between the D^{*+} and D^0 candidates in the range 0.144 GeV/ $c^2 < \Delta m < 0.148$ GeV/ c^2 . The momentum of D^{*+} candidates is required to satisfy $p_{D^{*+}}^* < 2.5$ GeV/c. Continuum $e^+e^- \rightarrow q\bar{q}$ background is suppressed with the Fox-Wolfram moment ratio $R^2 < 0.25$. Electron candidates are selected with requirements on the energy-to-momentum ratio $E_{ECL}/p > 0.8$ and on the shower width parameter E9/E21 > 0.94, and must have centerof-mass momentum in the range 1.2 GeV/ $c < p_l^* < 2.4$ GeV/c. The internal document reference is BELLE2-NOTE-PH-2018-018.