

FIG. 1: This figure shows $M_{\pi\pi\gamma}$ distribution, which was produced with phase 2 250 pb⁻¹ data. γ angle cut is limitation of initial state radiation (ISR) photon emission angle in the laboratory frame to the central part of the barrel region (50° - 100°). Electron veto is to reject radiative Bhabha events, and requires E/p < 0.65 for both track candidates. The peak at the collision energy indicates detection of production of two charged tracks with hard ISR from e^+e^- collision. Further detail is described in BELLE2-NOTE-PH-2018-013.

FIG. 2: This plot shows $M_{\pi\pi}$ distribution in $ee \to \pi\pi\gamma$ process. For data, limitation of γ emission angle, consistency of $M_{\pi\pi\gamma}$ with the beam energy and E/p < 0.65 are required. Since no particle identification cuts except the E/p cut, $ee \to \mu\mu\gamma$ and $ee \to K^+K^-\gamma$ processes can also contribute. These make a peak at low mass region (~ 400 MeV/c²). The $ee \to \pi\pi\gamma$ process gives a huge peak of ρ meson resonance, which is clear observed in data, and agreement with MC simulation is reasonable. Further detail is described in BELLE2-NOTE-PH-2018-013.