

Figure 1: This figure shows the invariant mass distributions of charm candidates in 472 pb⁻¹ of collision data, in the mode $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ for $0.1405 < \Delta M < 0.1425$ GeV/ c^2 . Events are required to contain at least three good tracks to purity the sample with processes of the type $e^+e^- \rightarrow$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged kaon and pion tracks are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. Particle identification criteria > 0.5 is applied for K^- . The D^* candidates are required to have a centre-of-mass momentum of greater than 2.5 GeV/c to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.

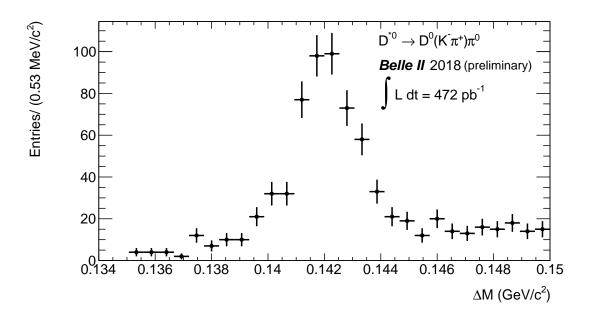


Figure 2: This figure shows the ΔM distribution of charm candidates in 472 pb⁻¹ of collision data, in the mode $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ for 1.855 $\langle M(K\pi) \rangle \langle 1.75$ GeV/ c^2 . Events are required to contain at least three good tracks to purity the sample with processes of the type $e^+e^- \rightarrow$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged kaon and pion tracks are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. Particle identification criteria > 0.5 is applied for K^- . The D^* candidates are required to have a centre-of-mass momentum of greater than 2.5 GeV/c to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.