

Figure 1: This figure shows the invariant mass distribution of charm candidates in 250 pb⁻¹ of collision data, in the mode $D^+ \to K^-\pi^+\pi^+$. Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^- \to$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged kaon and pion tracks are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. No particle identification criteria is applied. The D^+ candidates are required to have a centre-of-mass momentum of greater than 2.5 GeV/c to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.

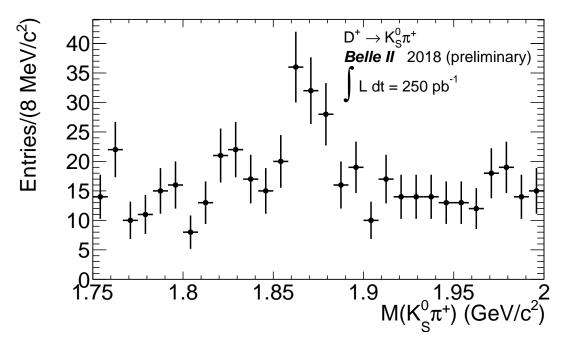


Figure 2: This figure shows the invariant mass distribution of charm candidates in 250 pb⁻¹ of collision data, in the mode $D^+ \to K_S^0 \pi^+$. Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^- \to$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged pion tracks from D^+ are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. No particle identification criteria is applied. K_S^0 candidates decaying outside the beam pipe are selected with $0.45 < M(\pi^+\pi^-) < 0.55 \text{ GeV/c}^2$. A vertex fitter based on a Kalman algorithm is used to fit the vertex to reject candidates where the tracks do not originate from near a common decay point. An optimised K_S^0 selection is done as mentioned in BELLE2-NOTE-PL-2018-016. The D^+ candidates are required to have a centre-of-mass momentum of greater than 2.5 GeV/c to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.