

Figure 1: This figure shows the invariant mass distribution of charm candidates in $472~{\rm pb^{-1}}$ of collision data, in the mode $D^{*+} \to D^0\pi^+$, $D^0 \to K^-\pi^+$ for $0.144 < \Delta M < 0.146~{\rm GeV}/c^2$. Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^- \to {\rm hadrons}$, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged kaon and pion tracks are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. Particle identification criteria > 0.5 is applied to K^- . The D^* candidates are required to have a centre-of-mass momentum of greater than 2.5 ${\rm GeV}/c$ to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.

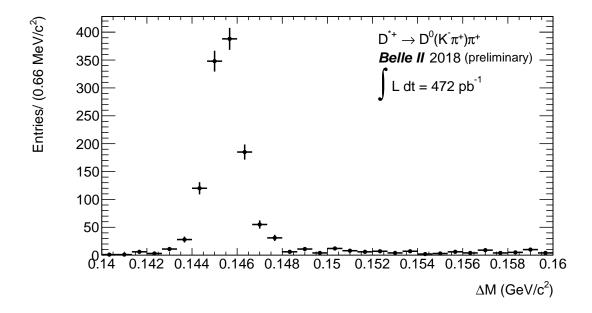


Figure 2: This figure shows the ΔM distribution of charm candidates in 472 pb⁻¹ of collision data, in the mode $D^{*+} \to D^0 \pi^+$, $D^0 \to K^- \pi^+$ for 1.845 $< M(K^- \pi^+) <$ 1.885 GeV/ c^2 . Events are required to contain at least three good tracks to purify the sample with processes of the type $e^+e^- \to$ hadrons, while rejecting beam induced background, Bhabha scattering, and other low multiplicity background sources. The charged kaon and pion tracks are required to have impact parameters, $|d_0|$ and $|z_0|$ less than 0.5 cm and 3.0 cm respectively. Particle identification criteria > 0.5 is applied to K^- . The D^* candidates are required to have a centre-of-mass momentum of greater than 2.5 GeV/c to select $c\bar{c}$ events. The internal document reference is BELLE2-NOTE-PH-2018-004.