

The Belle II flavor tagger

Fernando Abudinén

July 11, 2018

- 1 Introduction
- 2 The category-based flavor tagger
- 3 The deep-neural flavor tagger
- 4 Tests with Belle data
- 5 Conclusions and Outlook

Max-Planck-Institut für Physik

Starting Info: Objects in the tag side (rest of event).

Magenta Boxes: Multi-variate Methods. Default: Belle II's Fast-boosted decision tree. • FBDT 3 Cross check: 3-layer Perceptron (Only Combiner) • FANN Library.

Tagging variables

2

 $p^* \left[\text{GeV} / c \right]$

3

Two types:

Particle identification (PID)

Kinematic

4

- PID: Likelihoods combining info from different subdetectors.
- Kin.: Simple: Momentum, transverse momentum, impact params., polar angle.Elaborated: recoil mass, energy in W boson direction, miss. momentum., cosines to thrust axis, and others.
 - Total: 220 Variables. Unique variables: 108.
 - \Rightarrow Optimized for CPU: Each Variable is calculated only once for each particle list! (108 instead of 220 calculations).

Training: Signal MC $\Upsilon(4S) \to \, {B^0}_1 (\to J/\Psi K^0_S) \,\, {B^0}_2 (\to {\rm generic})$

6

Category-based tagger with Belle II MC

Category-based tagger with Belle MC

Deep-neural flavor tagger

- 10 tracks at maximum
- sorted by momentum and grouped by charge.
- Input: PID variables, momentum, azim. and polar angles, impact params., hit counts in trackers. Total = 140
- $\begin{array}{ll} \mbox{Training: Pylearn2 Library} \Rightarrow \\ \mbox{Theano} \Rightarrow \mbox{GPUs.} \end{array}$

Effective efficiencies:

$\varepsilon_{\mathrm{eff}} [\%]$	MC	
	Belle II*	Belle
Category-based	37.2	34.3
Deep neural	40.7	34.4

* No beam bkg. and IP always at zero.

Category-based tagger with Belle data

- Splot performed with converted Belle data using m_{bc} as discriminating variable.
- Full Belle 0.8 ab⁻¹ $B^0 \rightarrow J/\psi K_S^0$

 Belle Data distribution weighted with splot output variable (signal component).
 B2TIP (Belle II physics book)

 Nice overlap of output distribution for Belle MC and Belle data ③.

Belle II: $\varepsilon_{\text{Eff}} = 33.6 \pm 0.5\%$ on Belle data (Assuming MC calibration). • $\varepsilon_{\text{Eff}}(\text{Belle}) = 30.1 \pm 0.4\%$, $\varepsilon_{\text{Eff}}(\text{BaBar}) = 33.1 \pm 0.3\%$.

- Performance of category-based and of deep-neural taggers are similar with Belle MC.
- On Belle II MC without beam bkg. and beam spread, the deep-neural algorithm performs better.
- The category-based tagger has been validated on Belle data.
- \Rightarrow For the deep-neural tagger is ongoing.
 - Calibration of both taggers using Belle data (flavor-mixing measurement) is ongoing.
 - Benchmark calibration with first ~ 20 fb⁻¹ Belle II commisioning data possible (Preparation ongoing).
 - We want to use both algorithms for better understanding of MC/Data differences.

- Binning ⇒ correction with real data!
- Efficiency:

$$\varepsilon_{\text{Eff}} = \sum_i \varepsilon_i \cdot \langle r_i \rangle^2$$

$$\bullet \mathbf{r}_{\mathsf{MC}} = 1 - 2 \cdot \mathbf{w}_{\mathsf{MC}}$$

Calibration: r_{MC} linear to
 r_{Output}

Categories	Discriminating input variables	
Electron	$\mathcal{L}_{e}, \ p^{*}, \ p^{*}_{t}, \ p, \ p_{t}, \ \cos\theta, \ d_{0}, \ \boldsymbol{x} , \ M^{2}_{\text{rec}}, \ E^{W}_{90}, \ p^{*}_{\text{miss}}, \ \cos\theta^{*}_{\text{miss}}, \ \cos\theta^{*}_{\text{T}}, \ p\text{-val}.$	
Int. Electron		
Muon	$\mathcal{L}_{\mu}, \ p^*, \ p^*_{t}, \ p, \ p_{t}, \ \cos\theta, \ d_0, \ \boldsymbol{x} , \ M^2_{rec}, \ E^W_{90}, \ p^*_{miss}, \ \cos\theta^*_{miss}, \ \cos\theta^*_{T}, \ p\text{-value}$	
Int. Muon		
Kin. Lepton	\mathcal{L} \mathcal{L} \mathfrak{n}^* \mathfrak{n}^* \mathfrak{n}	
Int. Kin. Lep.	$\mathcal{L}_e, \mathcal{L}_\mu, p, p_t, p, p_t, \cos \sigma, a_0, \mathbf{x} , M_{\text{rec}}, \mathcal{L}_{90}, p_{\text{miss}}, \cos \sigma_{\text{miss}}, \cos \sigma_{\text{T}}, p_{\text{miss}}$	
Kaon	$\mathcal{L}_K,p^*,p^*_{t},p,p_{t},\cos heta,d_0, oldsymbol{x} ,n_{K^0_{c}},\sum p^2_{t},$	
	$M_{ m rec}^2, E_{90}^W, p_{ m miss}^*, \cos heta_{ m miss}^*, \cos heta_{ m T}^*, \chi^2$	
Slow Pion	$\mathcal{L}_{\pi}, \ \mathcal{L}_{e}, \ \mathcal{L}_{K}, \ p^{*}, \ p^{*}_{t}, \ p, \ p_{t}, \ \cos heta, \ d_{0}, \ m{x} , \ n_{K^{ heta}_{lpha}}, \ \sum p^{2}_{t},$	
Fast Hadron	$M^2_{ m rec}, E^W_{90}, \ p^*_{ m miss}, \ \cos heta^*_{ m miss}, \ \cos heta^*_{ m T}, \ p$ -val.	
Kaon-Pion	$\mathcal{L}_K, \; y_{Kaon}, \; y_{SlowPion}, \; \cos heta_{K\pi}^*, \; q_K \cdot q_\pi$	
Maximum P*	$p^*, p^*_{t}, p, p_{t}, d_0, \boldsymbol{x} , \cos heta^*_{T}$	
FSC	$\mathcal{L}_{K\text{Slow}}, \ p^*_{\text{Slow}}, \ p^*_{\text{Fast}}, \ \cos \theta^*_{\text{T, Slow}}, \ \cos \theta^*_{\text{T, Fast}}, \ \cos \theta^*_{\text{SlowFast}}, \ q_{\text{Slow}} \cdot q_{\text{Fast}}$	
Lambda	$\mathcal{L}_{p}, \mathcal{L}_{\pi}, p_{\Lambda}^*, p_{\Lambda}, p_p^*, p_p, p_{\pi}^*, p_{\pi}, q_{\Lambda}, M_{\Lambda}, n_{K_S^0}, \cos \theta_{\boldsymbol{x}_{\Lambda}, \boldsymbol{p}_{\Lambda}}, \boldsymbol{x}_{\Lambda} , \sigma_{\Lambda}^{zz}, p_{-v}.$	

Optimized for CPU: Each Variable is calculated only once for each particle list! (108 instead of 220 calculations)

14 5 Particle lists: e, μ, K, π, Λ