Charm physics prospects at the Belle II experiment

Marko Starič

Jožef Stefan Institute, Ljubljana

MESON 2018

M. Starič (IJS)

Charm physics prospects at the Belle II

Krakow, June 7-12, 2018

- Super KEKB and Belle II
- Status of the detector and accelerator
- Selection of Belle II prospects on charm

∃ ► < ∃ ►</p>

3

🚰 Belle II experiment

• Successor of Belle experiment (KEK, Tsukuba, Japan)

SuperKEKB accelerator

- upgraded KEKB
- luminosity 40 \times KEKB (8 \times 10 $^{35} {\rm cm}^{-2} {\rm s}^{-1}$)
- nano-beam optics

Belle II detector

- upgraded Belle detector
- majority of components replaced

- Critical issues at $\mathcal{L}=8\times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - Higher background (×10 20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in EM calorimeter
 - Higher event rate (×40)
 - affects trigger, DAQ and computing

Have to employ and develop new technologies to make such an apparatus work efficiently.

Belle II detector upgrade \rightarrow almost completed

- Vertex detector
 - $\bullet\,$ 4-layer DSSD replaced with 2 DEPFET layers + 4 DSSD layers
 - smaller inner radius, larger outer radius
 - \rightarrow better vertex resolution
 - \rightarrow improved efficiency for slow pions and K_S
- Central drift chamber
 - smaller cells, larger outer radius
 - \rightarrow improved momentum resolution and dEdx
- Hadron ID
 - ACC + TOF replaced with TOP (barrel) and aerogel RICH (forward)
 - \rightarrow less material in front of calorimeter
 - \rightarrow improved hadron ID
- Electromagnetic calorimeter
 - waveform sampling technique to cope with increased background
- K-long and muon detector
 - RPC's in endcaps and first two layers of barrel replaced with scintillator counters to cope with increased neutron background

Belle II performance improvements

Improvements w.r.t Belle

- primary and secondary vertex resolution
- K_S and π^0 reconstruction
- hadron and muon ID in the end caps
- K/π separation

🚰 Belle II schedule

- \bullet 2018 (phase 2): first collisions on April 26 $^{\rm th}$
- 2019 (phase 3): start of physics run
- $\bullet~{\rm collect}\sim 5~{\rm ab}^{-1}$ by mid 2020
- collect 50 ab^{-1} by 2025

M. Starič (IJS)

Charm physics prospects at the Belle II

First collisions: Bhabha candidate

M. Starič (IJS)

Charm physics prospects at the Belle II

Krakow, June 7-12, 2018

- Evidence of K_S and π^0 in the collected data sample of 5 pb^{-1}
- Calibrations at a very early stage

M. Starič (IJS)

Krakow, June 7-12, 2018

Evidence of D*+ and D⁰ in the collected data sample of 5 pb⁻¹
Calibrations at a very early stage, no PID requirements

M. Starič (IJS)

Charm physics prospects at the Belle II

🚰 Prospects for charm at Belle II

Mixing and CPV

- Belle measurements extrapolated to 50 ab^{-1}
- Systematic uncertainties primarily scale with integrated luminosity, with two exceptions:
 - model related systematics of t-dependent Dalitz analysis (resonance parameters masses, widths, form factors, angular dependence etc.)
 - A_{CP} of modes with K_s^0 : asymmetry of K^0/\overline{K}^0 interactions in material (PRD 84, 111501 (2011)), $\sigma_{ired} \approx 0.02\%$
- Extrapolation:

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Detector performance improvements are not included in the extrapolation

	Belle	Belle II
$D^0 o K^{(*)-} \ell^+ u$	492 fb ⁻¹ (2008)	50 ab^{-1}
R _M	$(1.3\pm2.2\pm2.0) imes10^{-4}$	$\pm 0.3 imes 10^{-4}$
$D^0 ightarrow K^+ K^-, \pi^+ \pi^-$	976 fb ⁻¹ (2016)	50 ab^{-1}
Уср	$(1.11\pm 0.22\pm 0.11)\%$	±0.04%
A_{Γ}	$(-0.03\pm0.20\pm0.08)\%$	$\pm 0.03\%$
$D^0 o K^+ \pi^-$	400 fb ⁻¹ (2006)	50 ab^{-1}
x ²	$(1.8\pm2.2\pm1.1) imes10^{-4}$	$\pm 0.22 imes 10^{-4}$
у′	$(0.06\pm0.40\pm0.20)\%$	$\pm 0.04\%$
A_M	0.67 ± 1.20	± 0.11
$ \phi $	0.16 ± 0.44	± 0.04
$D^0 o K^0_s \pi^+ \pi^-$	921 fb ⁻¹ (2014)	50 ab^{-1}
X	$(0.56 \pm 0.19 \pm 0.06 \pm 0.08)\%$	$\pm 0.08\%$
у	$(0.30 \pm 0.15 \pm 0.06 \pm 0.04)\%$	$\pm 0.05\%$
q/p	$0.90 \pm 0.16 \pm 0.04 \pm 0.06$	± 0.06
ϕ	$-0.10\pm0.19\pm0.04\pm0.07$	±0.07

$$|q/p| = \frac{1}{2} + \frac{1}{2} A_{\mathcal{M}} \Rightarrow \delta |q/p| = \frac{1}{2} \delta A_{\mathcal{M}}$$

M. Starič (IJS)

Charm physics prospects at the Belle II

Krakow, June 7-12, 2018 13 / 18

\mathcal{C} Time-integrated measurements (A_{CP})

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 o K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 o \pi^+\pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o K^0_S K^0_S$	921	$-0.02\pm1.53\pm0.02\pm0.17$	± 0.21
$D^0 o K^0_s \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 o \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 o K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.04
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ ightarrow K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D^+ o \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^+_s o K^0_s \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D^+_s o K^0_s K^+$	673	$+0.12\pm 0.36\pm 0.22$	±0.05

M. Starič (IJS)

Charm physics prospects at the Belle II

Krakow, June 7-12, 2018

Direct CPV in $D^0 \rightarrow \phi \gamma, \rho^0 \gamma$

 Direct CPV in radiative decays can be enhanced by chromomagnetic dipole operators (G. Isidori and J. F. Kamenik, PRL 109, 171801 (2012))

•
$$D^0 \rightarrow \phi \gamma$$
: A_{CP} up to 2%

•
$$D^0
ightarrow
ho^0 \gamma$$
: A_{CP} up to 10%

• Belle, 943 fb⁻¹, PRL 118, 051801 (2017)

•
$$A_{CP}(D^0 \to \phi \gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$$

- $A_{CP}(D^{\circ} \to \rho^{\circ} \gamma) = (5.6 \pm 15.2 \pm 0.6)\%$ \rightarrow consistent with no CPV
- Sensitivity at 50 ab^{-1}

•
$$A_{CP}(D^0 \to \phi \gamma)$$
 : 0.9%
• $A_{CP}(D^0 \to \rho^0 \gamma)$: 2.1%

Krakow, June 7-12, 2018

🚰 Rare and forbidden decays

- Decays involving π^0 , η and ω mostly done by CLEO
- Belle II can improve these UL by several orders of magnitude

 $D^0 \to \gamma \gamma$ on the next slide

Krakow, June 7-12, 2018

• SM predictions: long distance effects dominate $Br \sim {\rm few} \times 10^{-8}$

• Belle, 832 fb⁻¹
$$Br < 8.5 \times 10^{-7}$$
 @ 90% CL

PRD 93, 051102 (2016)

- Belle II at 50 ab⁻¹:
 - \rightarrow depends how background behaves
 - if UL would scale with ${\cal L}:$ UL $\sim 2\times 10^{-8}$
 - if UL would scale with $\sqrt{\mathcal{L}}$: UL $\sim 1 \times 10^{-7}$

- SuperKEKB is completing commissioning phase
 - first collisions achieved a month ago
- Phase 2 data taking started
 - understand the machine and the backgrounds
 - detector and software checkout
 - possible initial physics studies
- Physics run will start in less than a year, at beginning of 2019
- A rich charm physics program ahead, ready to improve precision on
 - CP asymmetries, mixing and CPV parameters
 - limits on rare and forbidden decays
 - decay constants f_D and f_{Ds} from semileptonic decays
 - measurements of charm baryons

・ 同 ト ・ ヨ ト ・ ヨ ト