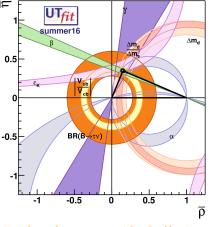


Determination of $|V_{ub}|$ and $|V_{cb}|$ at Belle (II)

Matic Lubej*

CIPANP 2018

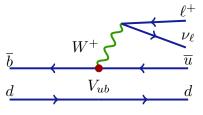

Palm Springs, CA, USA

Wednesday, May 30th, 2018

*On behalf of the Belle II collaboration

Matic Lubej (J. Stefan Institute)

The importance of $|V_{ub}|$ and $|V_{cb}|$


Back-reference to Abi Soffer's plenary talk in case you missed it

- Central for testing the CKM sector of the SM
- Era of searching for new physics (NP) → precision measurements
- $|V_{qb}|$ puzzle:
 - $\delta_{|V_{ub}|} \sim 4$ %, difference $\sim 3.5\sigma$
 - $\delta_{|V_{cb}|} \sim$ 2 %, difference \sim 2.9 σ
- |V_{ub}| has largest error among unitarity triangle (UT) parameters, offers best handle on NP

Exclusive $|V_{qb}|$

From measurements of the branching decay rates to specific final states

- $|V_{ub}|$ determined exclusive $B \to X_u \ell \nu$ decays - most precise in $B \to \pi \ell \nu$ with $\ell = e, \mu$
- $|V_{cb}|$ determined exclusive $B \to X_c \ell \nu$ decays
 - most precise in $B \to D^{(*)} \ell \nu$ with $\ell = e, \mu$

Please see arXiv:1606.08030 for a nice summary of BGL, BCL and CLN parametrizations

Theoretical input: Lattice QCD and Light-Cone Sum Rules

Matic Lubej (J. Stefan Institute)

Determination of $|V_{ab}|$ at Belle (II)

• $|V_{uh}|^{\text{excl.}} =$

param.

• $|V_{ch}|^{\text{excl.}} =$

 $(3.65 \pm 0.09_{\text{exp}} \pm 0.11_{\text{theo.}}) \times 10^{-3}$

 $(39.05 \pm 0.47_{exp} \pm 0.58_{theo.}) \times 10^{-3}$

 $B \to D^* \ell \nu$, LQCD, CLN param. (39.18 $\pm 0.94_{exp} \pm 0.36_{theo.}$) $\times 10^{-3}$


 $B \rightarrow D\ell\nu$, LQCD, CLN param.

 $B \rightarrow \pi \ell \nu$, LOCD, LCSR, BCL

Inclusive $|V_{qb}|$

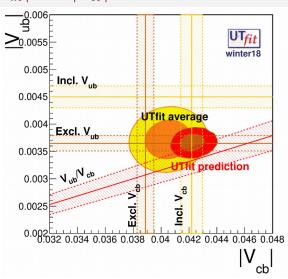
From measurements of the **total** or **partial** inclusive semi-leptonic branching decay rates

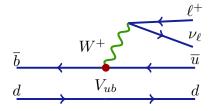
- $|V_{ub}|$ determined in inclusive charmless semileptonic decays $b \rightarrow u \ell \nu$
- $|V_{cb}|$ determined in inclusive charmed semileptonic decays $b \rightarrow c \ell \nu$

• $|V_{ub}|^{\text{incl.}} =$ $\left(4.52 \pm 0.15_{\exp -0.14 \text{theo}}^{+0.11}\right) \times 10^{-3}$ GGOU

• $|V_{cb}|^{\text{incl.}} = (42.19 \pm 0.78) \times 10^{-3}$ Kinetic scheme

Status of $|V_{ub}|$ and $|V_{cb}|$



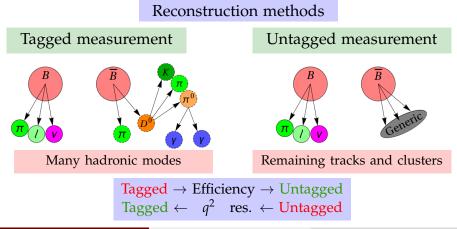

Image: Luca Silvestrini @ La Thuile 2018 Exclusive measurements prefer smaller values than inclusive ones.

Matic Lubej (J. Stefan Institute)

Determination of exclusive $|V_{ub}|$ at B-factories

Differential \mathcal{B} for pseudoscalar^{*} $B^0 \to \pi^- \ell^+ \nu_\ell$ decay

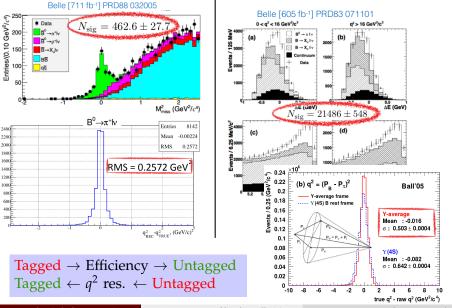
$$\frac{\mathrm{d}\mathcal{B}}{\mathrm{d}q^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |f_+^{B\pi}(\mathbf{q}^2)|^2$$



Experimental measurement of the branching fraction and theoretical input on form factors needed to determine $|V_{ub}|$.

^{*} Simplified for low mass charged leptons (*e* and μ)

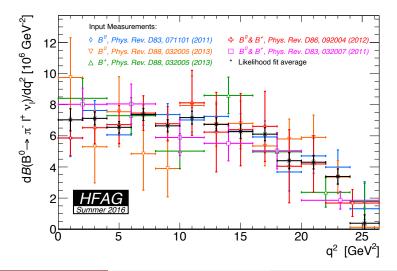
Experimental measurements at *B* factories


- Initial state well known: $e^+e^- \rightarrow \Upsilon(4S)$ (at rest)
- Neutrino escapes detection: $p_{miss} = p_{\Upsilon(4S)} p_{B_{rec}} p_{B_{comp}}$
- If neutrino is the only missing particle: $p_{\nu} = p_{\text{miss}}$

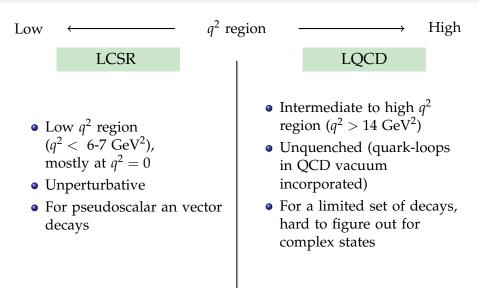
Matic Lubej (J. Stefan Institute)

Tagged (Belle)

Untagged (Belle)


Matic Lubej (J. Stefan Institute)

Determination of $|V_{ab}|$ at Belle (II)


May 30th, 2018 8 / 22

Combined tagged/untagged Belle/BaBar

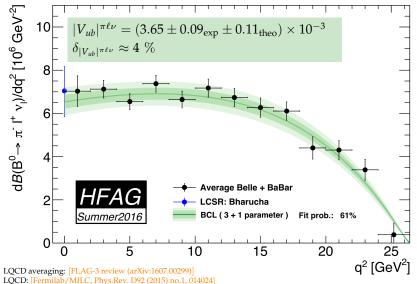
The most precise measurements averaged with a likelihood fit.

Theoretical input: form factor calculations

$|V_{ub}|$ extraction process

- Need to extrapolate theory input to a certain or full q^2 region
- Model dependent/independent: Whether the model makes any assumptions regarding FF shape

Calculation from ΔB

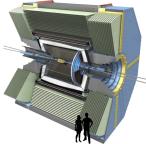

- Mostly obsolete process
- Measure partial branching ratio in a *q*² region (Δ*B*)
- Calculate reduced branching ratio in same region (Δζ)

$$|V_{ub}|^2 = \frac{\Delta \mathcal{B}(q_{\min}^2, q_{\max}^2)}{\tau_B \Delta \zeta(q_{\min}^2, q_{\max}^2)}$$

Simultaneous fit to data and theory

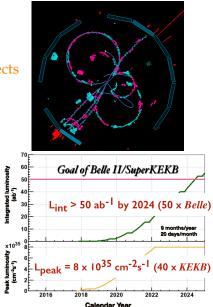
- Measure ΔB/Δq² spectrum in bins of q²
- Extract from simultaneous fit (least squares) to data (shape + scale) and theory input (shape) by minimizing $\chi^2 = \chi^2_{data} + \chi^2_{theory}$

$|V_{ub}|$ from simultaneous fit to $B \rightarrow \pi \ell \nu$ data

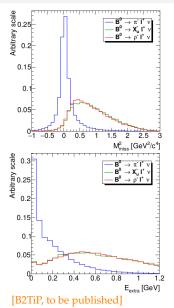


LQCD: [RBC/UKQCD, Phys.Rev. D91 (2015) no.7, 074510]

LCSR: [A. Bharucha, JHEP 1205 (2012) 092]


Matic Lubej (J. Stefan Institute)

Expected improvements at Belle II



More on Belle II prospects in next talk by A. Vossen

- First collisions in April 26th
- Higher luminosity (Belle ×40)
- More data expected ($\sim 50 \text{ ab}^{-1}$)
- Improved detector efficiency and purity (tracking, PID, K/π)
- Smarter software and more precise algorithms

$B \rightarrow \pi \ell \nu$ tagged prospects at Belle II (MC study)

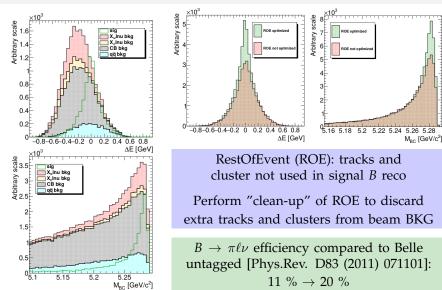
 $\begin{array}{c} \text{Belle IIMC}\\ \hline \\ \text{Belle IIMC}\\ \hline \\ \text{Comparison of the set of the s$

Better tagging algorithm with significantly higher tagging reconstruction efficiency

 $B \rightarrow \pi \ell \nu$ efficiency compared to Belle tagged [Phys.Rev. D88 (2013) no.3, 032005]: 0.3 % \rightarrow 0.55 %

Hadronic *B*_{tag} efficiency improvement

Hadronic tag channels


		3		
B^+ modes	B^0 modes		D^+, D^{*+}, D_s^+ modes	D^0, D^{*0} modes
$B^+ \rightarrow \overline{D}{}^0 \pi^+$	$B^0 \rightarrow D^- \pi^+$		$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^0 \rightarrow K^- \pi^+$
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0$		$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	$D^0 \rightarrow K^- \pi^+ \pi^0$
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^0 \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^-$		$D^+ \rightarrow K^- K^+ \pi^+$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D_s^+ D^-$		$D^+ \rightarrow K^- K^+ \pi^+ \pi^0$	$D^0 \rightarrow \pi^- \pi^+$
$B^+ \rightarrow D_s^+ \overline{D}^0$	$B^0 \rightarrow D^{*-}\pi^+$		$D^+ \rightarrow K_c^0 \pi^+$	$D^0 \rightarrow \pi^- \pi^+ \pi^0$
$B^+ \rightarrow \overline{D}^{*0}\pi^+$	$B^{0} \rightarrow D^{*-}\pi^{+}\pi^{0}$		$D^+ \rightarrow K_s^0 \pi^+ \pi^0$	$D^0 \rightarrow K^0_s \pi^0$
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^0$	$B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-$		$D^+ \rightarrow K^0_s \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow K_s^0 \pi^+ \pi^-$
$B^+ \rightarrow \overline{D}^{*0}\pi^+\pi^+\pi^-$	$B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-\pi^0$		$D^{*+} \rightarrow D^0 \pi^+$	$D^0 \rightarrow K_s^0 \pi^+ \pi^- \pi^0$
$B^+ \rightarrow \overline{D}^{*0}\pi^+\pi^+\pi^-\pi^0$ $D^+ = D^{*+}\overline{D}^0$	$B^0 \rightarrow D_s^{*+}D^-$ $D^0 \qquad D^+D^{*-}$		$D^{+} \rightarrow D^{-} \pi^{+}$ $D^{*+} \rightarrow D^{+} \pi^{0}$	$D \rightarrow K_s \pi^+ \pi^- \pi^-$ $D^0 \rightarrow K^- K^+$
$B^+ \rightarrow D_s^{*+}\overline{D}^0$ $B^+ \rightarrow D_s^+\overline{D}^{*0}$	$B^0 \rightarrow D_s^+ D^{*-}$ $B^0 \rightarrow D_s^{*+} D^{*-}$			$D^{-} \rightarrow K^{-}K^{+}K^{0}_{s}$ $D^{0} \rightarrow K^{-}K^{+}K^{0}_{s}$
$B^+ \rightarrow D_s D$ $B^+ \rightarrow \overline{D}^0 K^+$	$B \rightarrow D_s + D$ $B^0 \rightarrow J/\psi K_s^0$		$D_s^+ \rightarrow K^+ K_s^0$	
$B^+ \rightarrow D^- \pi^+ \pi^+$ $B^+ \rightarrow D^- \pi^+ \pi^+$	$B^{0} \rightarrow J/\psi K_{s}$ $B^{0} \rightarrow J/\psi K^{+}\pi^{+}$		$D_s^+ \rightarrow K^+ \pi^+ \pi^-$	$D^{*0} \rightarrow D^0 \pi^0$
$B^+ \rightarrow J/\psi K^+$	$B^0 \rightarrow J/\psi K^0 \pi^+ \pi^-$ $B^0 \rightarrow J/\psi K^0_s \pi^+ \pi^-$		$D_s^+ \rightarrow K^+ K^- \pi^+$	$D^{*0} \rightarrow D^0 \gamma$
$B^+ \rightarrow J/\psi R^+ \pi^+ \pi^-$	$D \rightarrow J/\psi R_S \pi \pi$		$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$	
$B^+ \rightarrow J/\psi K^+ \pi^0$			$D_s^+ \rightarrow K^+ K_s^0 \pi^+ \pi^-$	
$B^+ \rightarrow J/\psi K_s^0 \pi^+$			$D_s^+ \rightarrow K^- K_s^0 \pi^+ \pi^+$	
$B^+ \rightarrow D^- \pi^+ \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0 \pi^0$	h.,	$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^+ \pi^-$	
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^- \pi^0$		$D_s^+ \rightarrow \pi^+ \pi^+ \pi^-$	
$B^+ \rightarrow \overline{D}{}^0 D^+$	$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$		$D_s^{*+} \rightarrow D_s^+ \pi^0$	
$B^+ \rightarrow \overline{D}{}^0 D^+ K_s^0$	$B^0 \rightarrow D^- D^0 K^+$	-	$D^+ \rightarrow \pi^+ \pi^0$	$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$
$B^+ \rightarrow \overline{D}^{*0}D^+K_s^0$	$B^0 \rightarrow D^- D^{*0} K^+$		$D^+ \rightarrow \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^- \pi^0$
$B^+ \rightarrow \overline{D}{}^0 D^{*+} K_s^0$	$B^0 \rightarrow D^{*-}D^0K^+$		$D^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$	$D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$
$B^+ \rightarrow \overline{D}^{*0} D^{*+} K_s^0$	$B^0 \rightarrow D^{*-}D^{*0}K^+$		$D^+ \rightarrow K^+ K^0_r K^0_r$	$D^0 \rightarrow \pi^- \pi^+ \pi^0 \pi^0$
$B^+ \rightarrow \overline{D}{}^0 D^0 K^+$	$B^0 \rightarrow D^- D^+ K_s^0$		$D^{*+} \rightarrow D^+ \gamma$	$D^0 \rightarrow K^- K^+ \pi^0$
$B^+ \rightarrow \overline{D}^{*0} D^0 K^+$	$B^0 \rightarrow D^{*-}D^+K^0_s$		$D^{+} \rightarrow D^{+} \gamma$ $D^{+}_{s} \rightarrow K^{0}_{s} \pi^{+}$	D / K K #
$B^+ \rightarrow \overline{D}{}^0 D^{*0} K^+$	$B^0 \rightarrow D^- D^{*+} K^0_s$			w channels
$B^+ \rightarrow \overline{D}^{*0}D^{*0}K^+$	$B^0 \rightarrow D^{*-}D^{*+}K^0_s$			w onumers
$B^+\to \overline{D}{}^{*0}\pi^+\pi^0\pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^0 \pi^0$		$D_s^{*+} \rightarrow D_s^+ \pi^0$	

Tag	Old	New
B^+	0.28 %	0.49 %
B^0	0.19~%	0.33 %

- More channels included in the tag reconstruction
- Best candidate selection allows also inclusion of high multiplicity modes

[B2TiP, to be published]

$B \rightarrow \pi \ell \nu$ untagged at Belle II (MC study)

[B2TiP, to be published] Matic Lubei (J. Stefan Institute)

Assumptions for lattice forecasts

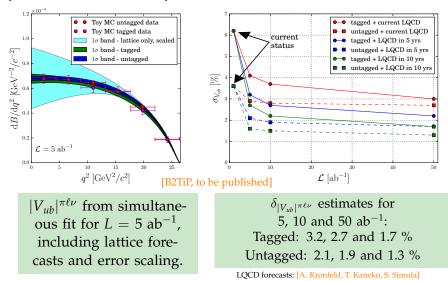
We provide 5 types of the lattice input

- current: input with the current precision basically taken from the updated FLAG-3 review (in preparation; to be appeared on the FLAG webpage: http://itpwiki.unibe.ch/flag/).
- 5 yr w/o EM: We assume a factor of 2 reduction of the lattice QCD uncertainty in the next five years and that the uncertainty of the EM correction is negligible (for processes insensitive to the EM correction).
- 5 yr w/ EM: LQCD uncertainty is reduced by a factor of 2 but add in quadrature 1% uncertainty from the EM correction.
- 10 yr w/o EM: We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years (or as a milestone of lattice QCD simulations). We also assume that the EM correction will be under control and its uncertainty is negligible.
- 10 yr w/ EM: LQCD uncertainty is reduced by a factor of 5 but add in quadrature 1% uncertainty from the EM correction.

Error scaling

Total error scaling with integrated luminosity L

$$\sigma_{\text{tot}}(L) = \sqrt{(\sigma_{\text{stat}}^2(L_0) + \sigma_{\text{sysred}}^2(L_0)) \times \frac{L_0}{L} + \sigma_{\text{sysirred}}^2(L_0)}$$


Systematics

- Belle II systematics estimated from Belle
- Reducible and irreducible systematics (with *L*)
- Tagged: 4.6 % red., 2.0 % irred., biggest contribution: tagging algorithm
- Untagged: 4.2 % red., 1.6 % irred., biggest contribution: $X_{u,c}\ell\nu$, FF shapes and background

[B2TiP, to be published]

$|V_{ub}|$ from $B \to \pi \ell \nu$ @ Belle II

Toy MC studies based on Belle II MC, LQCD forecasts estimated at 5 years (5, 10 ab^{-1}) and 10 years (50 ab^{-1})

Matic Lubej (J. Stefan Institute)

Determination of $|V_{ab}|$ at Belle (II)

May 30th, 2018 19 / 22

Determinations of exclusive $|V_{cb}|$

- As mentioned, $B \rightarrow D^{(*)} \ell \nu$ preferred channels
- Measurement of differential decay rate as a function of $w = v_B \cdot v_{D^{(*)}}$ (recoil variable from 4-velocities)

Differential \mathcal{B} of $B \to \overline{D}^* \ell^+ \nu$ for massless fermions

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w} = |V_{cb}|^2 \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \chi(w) \eta_{EW}^2 \mathcal{F}^2(w)$$

and $B \rightarrow \bar{D} \ell^+ \nu$ for massless fermions

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}w} = |V_{cb}|^2 \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \eta_{EW}^2 \mathcal{G}^2(w)$$

where $\chi(w)$ is a phase-space function, η_{EW} is the EW correction and $\mathcal{F}(w)$ and $\mathcal{G}(w)$ contain the appropriate information on $D^{(*)}$ form factors \rightarrow similar procedure for extraction as in case of V_{ub} !

Matic Lubej (J. Stefan Institute)

Exclusive $|V_{cb}|$ opportunities at Belle II

No extensive MC studies performed, but some predictions can be made

- Belle precision limited by systematics (hadronic tag calibration, tracking efficiency) \rightarrow need to bring them down to improve excl. $|V_{cb}|$ precision
- Replace CLN with model-independent BGL parametrization \rightarrow this issue might play a role in the excl./incl. puzzle

Authors of arXiv:1703.06124 have reanalyzed $B \rightarrow D^* \ell \nu$ results from arXiv:1702.01521 \rightarrow large differences between CLN to BGL parametrizations.

BGL result closer to incl. values, but further studies needed.

Summary

- Current precision $\delta_{|V_{ub}|} \approx 4 \%$ and $\delta_{|V_{cb}|} \approx 2 \%$
- |*V*_{*ub*}| puzzle persists, error still large compared to other CKM parameters (waiting on Belle II data)
 - Belle II MC study with 50 ab⁻¹ for tagged/untagged excl. $B \rightarrow \pi \ell \nu$ predicts errors of about 1.7/1.3 %
- |*V*_{*cb*}| puzzle also persists, waiting for more data while looking into existing results with better extraction methods
- Predictions for branching ratio precision of $B \rightarrow \pi \ell \nu$ on full Belle II sample enter the order of $1 2 \% \rightarrow \text{good precision for LUV}$ studies in these channels
- Errors of inclusive $|V_{qb}|$ are limited by theoretical uncertainties \rightarrow more data needed to constrain the dominant sources

Thank you!

BACKUP

Belle II prospects for exclusive $|V_{ub}|: B \to (\rho, \omega) \ell \nu$

No extensive studies for these projections.

Possible to assume sample sizes in the future based on Belle (hadronic tag) @ 711 fb⁻¹ with efficiency improvements:

•
$$N_{
ho^0} = (621.7 \pm 35.0) \rightarrow \sim 80 \text{k} \ (\delta_{\text{stat}} \approx 0.5\%) \ @ 50 \ \text{ab}^{-1}$$

•
$$N_{\rho^+} = (343.3 \pm 28.3) \rightarrow \sim 44 \text{k} \ (\delta_{\text{stat}} \approx 0.7\%) \ @ 50 \ \text{ab}^{-1}$$

•
$$N_{\omega(3\pi)} = (96.7 \pm 14.5) \rightarrow \sim 12.5 \text{k} \ (\delta_{\text{stat}} \approx 1.3\%) \ @ 50 \ \text{ab}^{-1}$$

- With such sample possible to do a full helicity angle analysis
- Also possible to check for right-handed currents
- Will contribute to better understanding of the $b \rightarrow u$ spectrum
- Can we expect lattice for these modes by then?