

Proudly Operated by Battelle Since 1965

Future of hadron exotics at Belle II

BRYAN FULSOM

Pacific Northwest National Laboratory Exotic Hadrons and Flavor Physics Workshop Simons Center for Geometry and Physics May 29 2018

Outline

- Belle II: the next generation B Factory
 - Detector / accelerator description
 - Collaboration and plans
 - Early Belle II status
- Future prospects: quarkonium and exotics
 - Charmonium(-like) production
 - Bottomonium(-like): Above Υ(4S)
 - Bottomnoium(-like): Below Υ(4S)

Proudly Operated by Battelle Since 1965

BELLE II INTRODUCTION

Motivation for a next generation B Factory

Proudly Operated by Battelle Since 1965

► Search for New Physics via precision measurements

▶ Belle II Advantages

- Sensitive to "New Physics" masses above direct production
- "Clean" experimental environment, full event reconstruction
- Tau decays and neutrals (γ , π °, K_L , ν) in final state
- Beam energy range and luminosity for exotics studies
- Complementary to LHC

The Belle II Collaboration

- ▶ 800+ members, 108 institutions, 25 countries
- Located at KEK in Tsukuba, Japan

SuperKEKB Accelerator Upgrade

- "Nano-beam" interaction point
- Increase in current
- Factor of 40x increase in luminosity
- Energy: e⁻ (7 GeV) e⁺ (4 GeV)

Detector Upgrade

Proudly Operated by Battelle Since 1965

Order of magnitude luminosity increase means:

Higher background

Radiation damage

Pile-up/ECAL hits

- Higher event rate
 - Trigger, DAQ, computing
- Boost change
 - Improve vertexing

Tracking: small-cell drift chamber

PID: TOP barrel,

aerogel endcap

Significant detector upgrades

Vertexing: 2 layer Si pixel + 4 layer Si strip

arXiv:1011.0352 (2011)

Calorimetry: electronics and readout

Muon/K_L: plastic scintillator, electronics upgrade

Detector Upgrade

Machine Capability

Proudly Operated by Battelle Since 1965

Luminosity

■ Belle: 2 x 10³⁴ cm⁻²s⁻¹

■ Belle II: 8 x 10³⁵ cm⁻²s⁻¹

Energy

Nominal: 10.58 GeV

Present Maximum: 11.02 GeV

Potential Maximum: 11.24 GeV

Belle II Schedule and Plans

Proudly Operated by Battelle Since 1965

- Phase 1 (completed 2016)
 - Accelerator commissioning
- Detector roll-in: April 2017
- Phase 2 (2017/18)
 - First collisions (10±10 fb⁻¹)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 (2018/19)
 - Nominal Belle II start

Ultimate goal: 50 ab⁻¹

Recent Status

Proudly Operated by Battelle Since 1965

First collisions: Apr. 26, 2018

Recent SuperKEKB status

First signs of physics

Proudly Operated by Battelle Since 1965

Beginning "rediscovery" of expected particles

QUARKONIUM AND EXOTICS

Quarkonium Spectroscopy Progress

- First discoveries of long-predicted conventional quarkonia
- Many discoveries are difficult to explain by quarkonium model
- ► Several states have non-zero charge, cannot be a cc/bb pair

Quarkonium production at ete colliders

- B decays
 - Charmonium only
 - All quantum numbers available
- Direct production / Initial State Radiation (ISR)
 - E_{CM} or below
 - J^{PC}=1⁻⁻
- Two-photon interaction
 - $J^{PC} = 0^{-+}, 0^{++}, 2^{++}$
- Double charmonium production
 - Seen for $J^{PC}=1^{--}(J/\psi, \psi(2S))$ plus J=0 states
- Quarkonium transitions
 - Hadronic/radiative decays between states

Charmonium(-like) Overview

- Charmonium system
 - Many states/overpopulation
 - Several in one process/mode
 - Limited statistics

- Belle II prospects
 - Competition from LHCb (B decays) and BESIII (scans for 1⁻⁻ states)
 - Exploit unique production methods: ISR, double charmonium, two-photon
 - Require large statistics samples
 - Not necessarily restricted by E_{CM}

ISR Charmonium

Proudly Operated by Battelle Since 1965

- ISR gives access to: lineshape of vector states, decays of vector exotical
 - Y(4220), Y(4320), Y(4360), Y(4660): many nearby peaks and final states

- Belle II @ 50ab⁻¹
 - Wider range of energies
 - Y(4260) lineshape
 - Strange partner of Z_c

Modes of interest

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error (%)	Related XYZ states
$\pi^+\pi^-J/\psi$	4.23	7.5 (3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	$Y(4260), Y(4360), Y(4660), Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	15 (6.5)	$Y(4220), Y(4390), Z_c(4020), Z_c(4025)$
$\omega\chi_{c0}$	4.23	$35 \ (15)$	Y(4220)

Other Charmonium Production

- Measureable only at Belle II
- Double charmonium

- Belle II prospects
 - angular distributions, production
 - probe for new states
 - \blacksquare χ_c and η_c recoil to study 1⁻⁻

- ► Two-photon fusion
 - $e^+e^- \to c\overline{c} (0^{-/+}, 2^+) e^+e^-$

- Disentangle φJ/ψ states
- $\chi_{c0,2}(2P)$ properties

Bottomonium(-like) Overview

- Important past B-Factory contributions
 - Bottomonium spectroscopy: discovery of η_b , h_b
 - **Anomalous** $\pi\pi$ and η transitions
 - Discovery of Z_b , exotic nature of above-threshold Υ states
- ► Most results from operation at non-Y(4S) energies

Existing datasets in fb-1 (M events)

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	Υ(5 <i>S</i>)	$\Upsilon(6S)$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5

- Expect additional samples to be collected at Belle II
- Existing B-Factories ~1.5 ab⁻¹ @ $\Upsilon(4S)$: opportunity for non-B physics results in early operation?

Potential Belle II Bottomonium Scenarios

- ► Above Y(4S)
 - Study of exotic four-quark states
 - <6fb⁻¹ accumulated by Belle at $E_{CM} = \Upsilon(6S)$
 - 1 ab⁻¹ @ $\Upsilon(5S)$ = order of magnitude increase (also B_s physics)
 - 100 fb⁻¹ @ Y(6S) plus ~400 fb⁻¹ scan
- ▶ Below Y(4S)
 - Bottomonium search/study
 - New Physics in decays
 - Scan for direct production of $\Upsilon(n^3D_1)$
 - 300fb^{-1} @ $\Upsilon(3S)$ = order of magnitude increase
- Dedicated operation <5% of total luminosity</p>

Z_b[±] states in the bottomonium system

- ► Anomalous dipion transition rate: $\Upsilon(5S) \rightarrow \pi\pi \ b\overline{b}$
- ► Discovery of $h_b(1P, 2P)$, $\eta_b(2S)$, indication of charged Z_b^{\pm} states
- $ightharpoonup \Upsilon(5S)
 ightharpoonup \pi^{\mp} Z_b^{\pm}
 ightharpoonup \pi^{\pm} \Upsilon(1S,2S,3S) \text{ and } Z_b^{\pm}
 ightharpoonup \pi^{\pm} h_b(1P,2P)$
- Analogous to Y(4260) decays and Z_c[±] in charmonium system!

PRL 108, 122001 (2012)

Z_b[±] states in the bottomonium system

Proudly Operated by Battelle Since 1965

Decays to B^(*)B* dominate

 $ightharpoonup Z_b$ masses ~equal to $B^{(*)}B^*$ thresholds?

Z_b[±] states from Υ(6S) decays

► Belle energy scan up to $\Upsilon(6S)$, search for $\Upsilon(6S) \rightarrow \pi^+\pi^- h_b(1P,2P)$ decays

- \triangleright Enhanced transition rate, similar to $\Upsilon(5S)$ scenario
- ► Observation of $Z_b(106XX)$ states, but unable to resolve them

Y(6S): Belle II Objectives

Proudly Operated by Battelle Since 1965

"New States"

- ► Understand $\Upsilon(6S) \rightarrow Z_b$ decay
 - $\Gamma(6S) \to \pi^+\pi^- h_b(1P,2P)$

 - Also with $\pi^{\circ}\pi^{\circ}$?
- Evidence Z_b is a molecular state
- Should have partners ("W_b")
- Potential searches
 - Γ (5S, 6S) $\rightarrow \gamma$ W_{b0}
 - $\Gamma(6S) \rightarrow \pi^+\pi^-(\rho) W_{b0}$ possible?
 - \bigvee $W_{b0} \rightarrow \eta_b \pi, \chi_b \pi, \Upsilon \rho$

Voloshin, PRD 84, 031502 (2011)

no way to produce B*B* molecule = $Z_b(10650)$

Y(6S): Belle II Objectives

Quarkonia Transitions

- Analogies to Υ(5S) evidence/observations at Belle

 - \blacksquare $\Upsilon(6S) \rightarrow \eta \Upsilon(pS)$ and $\eta \Upsilon(n^3D_J)$ (n=1)
 - \blacksquare $\Upsilon(6S) \rightarrow \omega \chi_b(1P)$
 - \blacksquare $\Upsilon(6S) \rightarrow K^+K^-\Upsilon(1S)$
 - Inclusive and exclusive searches for all of the above
- ► Understand the nature of above-threshold Y(mS) states

Bottomonium Discovery

- $ightharpoonup \Upsilon(6S)$ phase space opens possibility for first discovery:
 - $h_b(3P)$: $\Upsilon(6S) \to \pi^+\pi^- h_b(3P)$
 - \blacksquare Y(2D): $\Upsilon(6S) \rightarrow \pi^+\pi^-\Upsilon(2D)$ or $\rightarrow \eta \Upsilon(2D)$
 - 1F bottomonium multiplet via dipion transition?

Above Y(4S) Scan

Proudly Operated by Battelle Since 1965

- ► Other B^(*)B̄^(*) thresholds show potential
 - \blacksquare R_b dip versus $\pi\pi\Upsilon$ rise
 - Similar features as charm thresholds?
 - Sign of "Y_b" state near ~10.75 GeV?
- Previous scans <1 fb⁻¹ per point

▶ 10MeV steps of 10 fb⁻¹ to understand entire region, measure final state σ

Y(3S) On-Resonance: Bottomonium physics

- ▶ 300fb⁻¹ ~10xBaBar (Phase 3+)
 - Focus on conventional bb physics
 - $\Gamma(1^3D_J)$ triplet: discover J=1,3
 - $\eta_b(1S,2S)$: confirm $m(\eta_b(1S,2S))$
 - Hadronic (π° , $\pi^{+}\pi^{-}$, η , ω) decays
 - Radiative transitions
- $ightharpoonup Z_b^+$ exotic contributions?

- BSM physics
 - \blacksquare $\Upsilon(1S, 2S) \rightarrow \text{invisible}$
 - $\chi_{b0} \rightarrow \tau \tau$ light Higgs search
 - Dark sector $\gamma \chi \overline{\chi}$ decays

Proudly Operated by Battelle Since 1965

CONCLUSIONS

Conclusions

- SuperKEKB / Belle II upgrade status
 - Accelerator commissioning ongoing, collisions are happening!
 - Nominal start early 2019
- Next generation flavor factory
 - At least 50 times more data and improved detector capabilities
 - Search for New Physics via high-statistics precision measurement
- Potential for understanding exotic hadrons and quarkonium
 - Unique production methods to probe charmonium(-like) system
 - Only experiment able to address nature of bottomonium(-like) states

Conclusions

- SuperKEKB / Belle II upgrade status
 - Accelerator commissioning ongoing, collisions are happening!
 - Nominal start early 2019
- Next generation flavor factory
 - At least 50 times more data and improved detector capabilities
 - Search for New Physics via high-statistics precision measurement
- Potential for understanding exotic hadrons and quarkonium
 - Unique production methods to probe charmonium(-like) system
 - Only experiment able to address nature of bottomonium(-like) states

Thank you for your attention, and stay tuned!