Future of hadron exotics at Belle II

BRYAN FULSOM

Pacific Northwest National Laboratory
Exotic Hadrons and Flavor Physics Workshop
Simons Center for Geometry and Physics
May 29 2018
Outline

Belle II: the next generation B Factory
- Detector / accelerator description
- Collaboration and plans
- Early Belle II status

Future prospects: quarkonium and exotics
- Charmonium(-like) production
- Bottomonium(-like): Above $\Upsilon(4S)$
- Bottomnoium(-like): Below $\Upsilon(4S)$
Search for New Physics via precision measurements

Belle II Advantages
- Sensitive to “New Physics” masses above direct production
- “Clean” experimental environment, full event reconstruction
- Tau decays and neutrals (γ, π^0, K_L, ν) in final state
- Beam energy range and luminosity for exotics studies
- Complementary to LHC
The Belle II Collaboration

- 800+ members, 108 institutions, 25 countries
- Located at KEK in Tsukuba, Japan
SuperKEKB Accelerator Upgrade

- “Nano-beam” interaction point
- Increase in current
- Factor of 40x increase in luminosity
- Energy: $e^{-} (7 \text{ GeV}) e^{+} (4 \text{ GeV})$
Detector Upgrade

Order of magnitude luminosity increase means:

- Higher background
 - Radiation damage
 - Pile-up/ECAL hits
- Higher event rate
 - Trigger, DAQ, computing
- Boost change
 - Improve vertexing

Significant detector upgrades

- Calorimetry: electronics and readout
- Muon/K_L: plastic scintillator, electronics upgrade
- PID: TOP barrel, aerogel endcap
- Tracking: small-cell drift chamber
- Vertexing: 2 layer Si pixel + 4 layer Si strip

Exotics at Belle II – Bryan FULSOM (PNNL) – SCGP Workshop – 2018 05 29

Machine Capability

Luminosity
- **Belle**: $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- **Belle II**: $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$

Energy
- **Nominal**: 10.58 GeV
- **Present Maximum**: 11.02 GeV
- **Potential Maximum**: 11.24 GeV
Belle II Schedule and Plans

- **Phase 1 (completed 2016)**
 - Accelerator commissioning

- **Detector roll-in: April 2017**

- **Phase 2 (2017/18)**
 - First collisions $(10\pm 10 \text{ fb}^{-1})$
 - Partial detector
 - Background study
 - Physics possible

- **Phase 3 (2018/19)**
 - Nominal Belle II start

- **Ultimate goal: 50 ab$^{-1}$**
First collisions: Apr. 26, 2018

Recent SuperKEKB status
First signs of physics

Beginning “rediscovery” of expected particles

\[D^* \rightarrow \pi^\pm \, D^0(K^\mp \pi^\pm) \]

Also indications for \(\eta, \Lambda, K^*, \phi, \ldots \)
QUARKONIUM
AND EXOTICS
First discoveries of long-predicted conventional quarkonia

Many discoveries are difficult to explain by quarkonium model

Several states have non-zero charge, cannot be a $\bar{c}c/\bar{b}b$ pair
Quarkonium production at e^+e^- colliders

- **B decays**
 - Charmonium only
 - All quantum numbers available

- **Direct production / Initial State Radiation (ISR)**
 - E_{CM} or below
 - $J^{PC}=1^{--}$

- **Two-photon interaction**
 - $J^{PC} = 0^{-+}, 0^{++}, 2^{++}$

- **Double charmonium production**
 - Seen for $J^{PC}=1^{--}$ (J/ψ, $\psi(2S)$) plus $J=0$ states

- **Quarkonium transitions**
 - Hadronic/radiative decays between states
Charmonium(-like) Overview

- Charmonium system
 - Many states/overpopulation
 - Several in one process/mode
 - Limited statistics

- Belle II prospects
 - Competition from LHCb (B decays) and BESIII (scans for 1^- states)
 - Exploit unique production methods: ISR, double charmonium, two-photon
 - Require large statistics samples
 - Not necessarily restricted by E_{CM}
ISR Charmonium

- ISR gives access to: lineshape of vector states, decays of vector exotica
 - $Y(4220)$, $Y(4320)$, $Y(4360)$, $Y(4660)$: many nearby peaks and final states

- Belle II @ 50ab$^{-1}$
 - Wider range of energies
 - $Y(4260)$ lineshape
 - Strange partner of Z_c

- Modes of interest

<table>
<thead>
<tr>
<th>Golden Channels</th>
<th>$E_{c.m.}$ (GeV)</th>
<th>Statistical error (%)</th>
<th>Related XYZ states</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-J/\psi$</td>
<td>4.23</td>
<td>7.5 (3.0)</td>
<td>$Y(4008)$, $Y(4260)$, $Z_c(3900)$</td>
</tr>
<tr>
<td>$\pi^+\pi^-\psi(2S)$</td>
<td>4.36</td>
<td>12 (5.0)</td>
<td>$Y(4260)$, $Y(4360)$, $Y(4660)$, $Z_c(4050)$</td>
</tr>
<tr>
<td>K^+K^-J/ψ</td>
<td>4.53</td>
<td>15 (6.5)</td>
<td>Z_{cs}</td>
</tr>
<tr>
<td>$\pi^+\pi^-h_c$</td>
<td>4.23</td>
<td>15 (6.5)</td>
<td>$Y(4220)$, $Y(4390)$, $Z_c(4020)$, $Z_c(4025)$</td>
</tr>
<tr>
<td>$\omega_{\chi_{c0}}$</td>
<td>4.23</td>
<td>35 (15)</td>
<td>$Y(4220)$</td>
</tr>
</tbody>
</table>

BESIII, PRL 118, 092001 (2017)
Other Charmonium Production

- Measureable only at Belle II
- Double charmonium
 - $e^+e^- \rightarrow c\bar{c} (0^{+/-}) c\bar{c} (1^{-/+})$
- Belle II prospects
 - Angular distributions, production
 - Probe for new states
 - χ_c and η_c recoil to study 1^{--}

- Two-photon fusion
 - $e^+e^- \rightarrow c\bar{c} (0^{-+}, 2^+) e^+e^-$

- Belle II prospects
 - Disentangle $\phi J/\psi$ states
 - $\chi_{c0,2}(2P)$ properties
Important past B-Factory contributions

- Bottomonium spectroscopy: discovery of η_b, h_b
- Anomalous $\pi\pi$ and η transitions
- Discovery of Z_b, exotic nature of above-threshold Υ states

Most results from operation at non-$\Upsilon(4S)$ energies

Existing datasets in fb$^{-1}$ (M events)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$\Upsilon(1S)$</th>
<th>$\Upsilon(2S)$</th>
<th>$\Upsilon(3S)$</th>
<th>$\Upsilon(4S)$</th>
<th>$\Upsilon(5S)$</th>
<th>$\Upsilon(6S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEO</td>
<td>1.2 (21)</td>
<td>1.2 (10)</td>
<td>1.2 (5)</td>
<td>16 (17.1)</td>
<td>0.1 (0.4)</td>
<td>-</td>
</tr>
<tr>
<td>BaBar</td>
<td>-</td>
<td>14 (99)</td>
<td>30 (122)</td>
<td>433 (471)</td>
<td>R_b scan</td>
<td>R_b scan</td>
</tr>
<tr>
<td>Belle</td>
<td>6 (102)</td>
<td>25 (158)</td>
<td>3 (12)</td>
<td>711 (772)</td>
<td>121 (36)</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Expect additional samples to be collected at Belle II

Existing B-Factories \sim1.5 ab$^{-1}$ @ $\Upsilon(4S)$: opportunity for non-B physics results in early operation?
Potential Belle II Bottomonium Scenarios

Above $\Upsilon(4S)$
- Study of exotic four-quark states
- $<6\text{fb}^{-1}$ accumulated by Belle at $E_{\text{CM}}=\Upsilon(6S)$
- $1\text{ ab}^{-1} @ \Upsilon(5S) =$ order of magnitude increase (also B_s physics)
- $100\text{ fb}^{-1} @ \Upsilon(6S)$ plus $\sim400\text{ fb}^{-1}$ scan

Below $\Upsilon(4S)$
- Bottomonium search/study
- New Physics in decays
- Scan for direct production of $\Upsilon(n^3D_1)$
- $300\text{fb}^{-1} @ \Upsilon(3S) =$ order of magnitude increase

Dedicated operation $<5\%$ of total luminosity
Z_b^± states in the bottomonium system

- Anomalous dipion transition rate: γ(5S) → ππ b\bar{b}
- Discovery of h_b(1P, 2P), η_b(2S), **indication of charged Z_b^± states**
- γ(5S) → π^± Z_b^± → π^± γ(1S,2S,3S) and Z_b^± → π^± h_b(1P,2P)
- **Analogous to Y(4260) decays and Z_c^± in charmonium system!**

**PRL 108, 122001 (2012)
Z_b^\pm states in the bottomonium system

- Decays to B^{(*)}B^* dominate

\[Z_b(10610) \rightarrow B\bar{B}^* \]

\[Z_b(10650) \rightarrow B^*\bar{B}^* \]

- Z_b masses \sim equal to B^{(*)}B^* thresholds?

PRL 116, 212001 (2016)
Z\(_{b}^{\pm}\) states from \(\Upsilon(6S)\) decays

- Belle energy scan up to \(\Upsilon(6S)\), search for \(\Upsilon(6S) \rightarrow \pi^{+}\pi^{-} h_{b}(1P,2P)\) decays

 ![Graph showing \(\Upsilon(5S)\) and \(\Upsilon(6S)\) transitions](image)

 - Enhanced transition rate, similar to \(\Upsilon(5S)\) scenario
 - Observation of \(Z_{b}(106XX)\) states, but unable to resolve them

PRL 117, 142001 (2016)
γ(6S): Belle II Objectives

“New States”

- Understand $\gamma(6S) \to Z_b$ decay
 - $\gamma(6S) \to \pi^+\pi^- h_b (1P,2P)$
 - $\gamma(6S) \to \pi^+\pi^- \gamma(1S,2S,3S) (+ \ell^+\ell^- \text{ exclusive})$
 - Also with $\pi^0\pi^0$?

- Evidence Z_b is a molecular state
- Should have partners (“W_b”)
- Potential searches
 - $\gamma(5S, 6S) \to \gamma W_{b0}$
 - $\gamma(6S) \to \pi^+\pi^- (\rho) W_{b0}$ possible?
 - $W_{b0} \to \eta_b\pi, \chi_b\pi, \gamma\rho$

Voloshin, PRD 84, 031502 (2011)
γ(6S): Belle II Objectives

Quarkonia Transitions

► Analogies to γ(5S) evidence/observations at Belle
 - γ(6S) → π⁺π⁻ γ(n³D_J) (n=1 or 2)
 - γ(6S) → η γ(pS) and η γ(n³D_J) (n=1)
 - γ(6S) → ω χ_b(1P)
 - γ(6S) → K⁺K⁻ γ(1S)

► Inclusive and exclusive searches for all of the above

► Understand the nature of above-threshold γ(mS) states

Bottomonium Discovery

► γ(6S) phase space opens possibility for first discovery:
 - h_b(3P): γ(6S) → π⁺π⁻ h_b(3P)
 - Y(2D): γ(6S) → π⁺π⁻ Y(2D) or → η Y(2D)
 - 1F bottomonium multiplet via dipion transition?
Above $\Upsilon(4S)$ Scan

- Other $B^{(*)}\overline{B}^{(*)}$ thresholds show potential:
 - R_b dip versus $\pi\pi\Upsilon$ rise
 - Similar features as charm thresholds?
 - Sign of “Y_b” state near ~ 10.75 GeV?

- Previous scans <1 fb$^{-1}$ per point

- 10MeV steps of 10 fb$^{-1}$ to understand entire region, measure final state σ

PRL 117, 142001 (2016)

PRL 93, 011101 (2016)
γ(3S) On-Resonance: Bottomonium physics

- **300fb⁻¹ ~10xBaBar (Phase 3+)**
 - Focus on conventional $b\bar{b}$ physics
 - $γ(1^{3}D_{J})$ triplet: discover $J=1,3$
 - $\eta_{b}(1S,2S)$: confirm $m(\eta_{b}(1S,2S))$
 - Hadronic ($\pi^{0},\pi^{+}\pi^{-},\eta,\omega$) decays
 - Radiative transitions
 - Z_{b}^{+} exotic contributions?

- **BSM physics**
 - $γ(1S,2S) \rightarrow$ invisible
 - $\chi_{b0} \rightarrow \tau\tau$ light Higgs search
 - Dark sector $γ\chi\bar{\chi}$ decays
Conclusions

► SuperKEKB / Belle II upgrade status
 ■ Accelerator commissioning ongoing, collisions are happening!
 ■ Nominal start early 2019

► Next generation flavor factory
 ■ At least 50 times more data and improved detector capabilities
 ■ Search for New Physics via high-statistics precision measurement

► Potential for understanding exotic hadrons and quarkonium
 ■ Unique production methods to probe charmonium(-like) system
 ■ Only experiment able to address nature of bottomonium(-like) states
Conclusions

► SuperKEKB / Belle II upgrade status
 ▪ Accelerator commissioning ongoing, collisions are happening!
 ▪ Nominal start early 2019

► Next generation flavor factory
 ▪ At least 50 times more data and improved detector capabilities
 ▪ Search for New Physics via high-statistics precision measurement

► Potential for understanding exotic hadrons and quarkonium
 ▪ Unique production methods to probe charmonium(-like) system
 ▪ Only experiment able to address nature of bottomonium(-like) states

Thank you for your attention, and stay tuned!