Ultimate precision on $|V_{ub}|$ from semileptonic and leptonic decays

William Sutcliffe

Towards the Ultimate Precision in Flavour Physics, Warwick

April 18, 2018

William Sutcliffe

Ultimate precision on $|V_{\mu b}|$ from semileptonic

April 18, 2018 1 / 26

Status of $|V_{ub}|$

Status of $|V_{ub}|$

Why is $|V_{ub}|$ important?

Trees

Loops

William Sutcliffe

Ultimate precision on $|V_{ub}|$ from semileptonic

Inclusive theory

$$\frac{d^{3}\Gamma}{dp_{X}^{+} dp_{X}^{-} dE_{\ell}} = \frac{G_{F}^{2} |V_{ub}|^{2}}{192\pi^{3}} \int dk \ C(E_{\ell}, p_{X}^{-}, p_{X}^{+}, k) \ F(k)$$
$$+ O\left(\frac{\Lambda_{\text{QCD}}}{m_{b}}\right)$$

$$p_X^+ = E_X - |\vec{p}_X|, \qquad p_X^- = E_X + |\vec{p}_X|,$$

- *F*(*k*) pdf of *b* quark momentum, *k*
- C(Eℓ, p[−]_X, p⁺_X, k) computed perturbatively

Experimental approach

- Large background from b
 ightarrow c $(|V_{cb}|^2/|V_{ub}|^2 \sim 100)$
- Exploit b → c kinematic endpoints.

•
$$|V_{ub}| = \sqrt{\Delta \mathcal{B}/(\tau_B \Delta \Gamma)}$$

Inclusive $|V_{ub}|$ and its projection

Framework	$ V_{ub} [10^{-3}]$
BLNP	$4.44 \pm 0.15^{+0.21}_{-0.22}$
DGE	$4.52 \pm 0.16^{+0.15}_{-0.16}$
GGOU	$4.52 \pm 0.15^{+0.11}_{-0.14}$
ADFR	$4.08 \pm 0.13^{+0.18}_{-0.12}$
BLL $(m_X/q^2 \text{ only})$	$4.62 \pm 0.20 \pm 0.29$

Source	Error on \mathcal{B} (irreducible limit)
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2 (0.6)
Form factors $(D^{(*)}\ell\nu)$	1.2(0.6)
Form factors & $\mathcal{B}(D^{(**)}\ell\nu)$	0.2
$B \rightarrow X_u \ell \nu(SF)$	3.6 (1.8)
$B \rightarrow X_u \ell \nu (g \rightarrow s\bar{s})$	1.5
$\mathcal{B}(B \rightarrow \pi/\rho/\omega \ell \nu)$	2.3
$B(B \rightarrow \eta^{(\prime)} \ell \nu)$	3.2
$\mathcal{B}(B \rightarrow X_u \ell \nu)$ unmeasured/fragmenta-	2.9 (1.5)
tion	
Continuum & Combinatorial	1.8
Secondaries, Fakes & Fit	1.0
PID& Reconstruction	3.1
BDT/Normalisation	3.1 (2.0)
Total	8.1
(Total reducible)	7.4
(Total irreducible)	3.2

B2TiP report

$ V_{ub} $ inclusive		•				
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5	
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1	
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8	
			(日)	★ Ξ →	≣)	5

April 18, 2018 7 / 26

A global fit approach to inclusive $|V_{ub}|$

William Sutcliffe

Ultimate precision on $|V_{\mu b}|$ from semileptonic

April 18, 2018 8 / 26

Exclusive theory

- $H^{\mu}(f_i(q^2)) = \langle X | \bar{q} \gamma^{\mu} (1 \gamma_5) b | B \rangle$
- Form factors f_i(q²) computed with Light Cone Sum Rules or LQCD
- Matrix element factorises $\mathcal{M} = -i \frac{G_F}{\sqrt{2}} V_{ub} H^{\mu} L_{\mu}$ • $\mathcal{B} \propto \mathcal{M}^2 \propto |V_{\mu b}|^2$ 0.5 $\rightarrow \pi \mu \nu$ 0.4 $B_s \rightarrow K \mu \nu$ |V_{ib}|⁻² dΓ/dq² [ps⁻¹GeV⁻²] 0.3 0.2 0.1 0 5 10 15 20 25 q^2 [GeV²] Phys. Rev. D91 (2015) 074510,
 - arXiv:1501.0537.

Untagged $\bar{B}^0 \rightarrow \pi^+ I^- \bar{\nu}_I$ at the *B* factories

Tagged $\bar{B}^0 \rightarrow \pi^+ l^- \bar{\nu}_l$ at the *B* factories

- $p_{\nu} = p_{e^+e^-} p_{\pi} p_l p_{B_{\text{tag}}}$
- Fit Missing Mass Squared (p_{ν}^2)

B'→ath

B→X h

William Sutcliffe

Ultimate precision on $|V_{\mu b}|$ from semileptonic

$ar{B}^0 \! ightarrow \pi^+ I^- ar{ u}_I$ prospects

- Tagged and untagged analyses performed on Belle II MC.
- Untagged use optimised BDT selections for tracks and clusters in the Rest of the event.
- Tagged uses the Belle 2 tagging algorithm (FEI)

	Belle ϵ	Belle II ϵ
untagged	7.7-15%	20%
tagged	0.3%	0.55%

Previous Belle $\bar{B}^0 \rightarrow \pi^+ I^- \bar{\nu}_I$ systematics

Source	Error (Limit) [%]	
	Tagged [%]	Untagged
Tracking efficiency	0.4	2.0
Pion identification	-	1.3
Lepton identification	1.0	2.4
Kaon veto	0.9	-
Continuum description	1.0	1.8
Tag calibration and $N_{B\overline{B}}$	4.5 (2.0)	2.0 (1.0)
$X_u \ell \nu$ cross-feed	0.9	0.5 (0.5)
$X_c \ell u$ background	-	0.2 (0.2)
Form factor shapes	1.1	1.0 (1.0)
Form factor background	_	0.4 (0.4)
Total	5.0	4.5
(reducible, irreducible)	(4.6, 2.0)	(4.2, 1.6)

э

Projected $|V_{ub}|$ from $\bar{B}^0 \rightarrow \pi^+ I^- \bar{\nu}_I$ decays

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$|V_{ub}|$ from $\Lambda_b ightarrow p \mu^- \overline{ u}_\mu$ decays at LHCb

Prospects for $|V_{ub}|$ from $\Lambda_b \rightarrow p \mu^- \overline{\nu}_{\mu}$ decays

Table 1 Journary of Systematic uncertainties.		
Source	Relative uncertainty (%)	B(A.
$\overline{\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)}$	+4.7	~(110
Trigger	3.2	with I
Tracking	3.0	Accou
Λ_c^+ selection efficiency	3.0	ACCOL
$\Lambda_b^0 \rightarrow N^* \mu^- \overline{\nu}_{\mu}$ shapes	2.3	lumin
Λ_b^0 lifetime	1.5	trigge
Isolation	1.4	00
Form factor	1.0	A diff
Λ_b^0 kinematics	0.5	would
q^2 migration	0.4	would
PID	0.2	uncer
Total	+7.8 -8.2	

Table 1 | Summary of systematic uncortainties

 $\mathcal{B}(\Lambda_c o p K \pi)$ improves in line with Belle II data

- Account for increased luminosity, collision energy and trigger improvements.
- A differential q^2 measurement would reduce the theory uncertainty.

Albrecht et al. arXiv:1709.10308v5			
LHCb	8 fb^{-1}	22 fb^{-1}	$50 \ {\rm fb}^{-1}$
$ V_{ub}/V_{cb} $	3.4%	2.9%	2.1%
$ V_{ub} $	3.8%	3.3%	2.4%

$ar{B}^0_s ightarrow K^+ \mu^- \overline{ u}_\mu$ Prospects

- Smaller theoretical uncertainty than $\bar{B}^0 \! \rightarrow \pi^+ l^- \bar{\nu}_l$
- LHCb measurement to come!

- At Belle II expect 60M $B_s^{(*)}\bar{B}_s^{(*)}$ pairs in 1ab⁻¹
- 5-10% precision on the decay rate with $1 {\rm ab}^{-1}$

 $|V_{ub}|$ from leptonic decays

$|V_{ub}|$ from leptonic decays

$$\mathcal{B}(B^- o I^- ar{
u}_I) = rac{G_F^2 m_B m_I^2}{8\pi} \left(1 - rac{m_I^2}{m_B^2} f_B^2
ight) |V_{ub}|^2 au_B$$

- Bs are hierarchical with lepton mass due to helicity suppresion.
- $f_B = 187.1 MeV(0.7\%)$ is the decay constant.

I	$\mathcal{B}_{ ext{SM}}$	711 fb $^{-1}$	5 ab^{-1}	50 ab^{-1}
au	$(7.71\pm0.62) imes10^{-5}$	61179 ± 5031	430231 ± 35378	4302312 ± 353781
μ	$(3.46\pm0.28) imes10^{-7}$	275 ± 23	1933 ± 159	19333 ± 1590
е	$(0.811\pm 0.065) imes 10^{-11}$	0.0064 ± 0.0005	0.0453 ± 0.0037	0.4526 ± 0.0372

$B^- ightarrow au^- ar u_ au$ status

- Reconstruct B_{tag} hadronically or semileptonic.
- τ reconstructed in $e^-\nu_\tau \bar{\nu}_e$, $\mu^-\nu_\tau \bar{\nu}_\mu$, $\pi^- \bar{\nu}_\tau$, $\rho^- \bar{\nu}_\tau$,

• Fit sum of remaining energy in the EM calorimeter (*E_{ECL}*)

- ∢ ∃ ▶

Projecting $|V_{ub}|$ from $B^- \to \tau^- \bar{\nu}_{\tau}$

Belle Hadronic

Source	${\mathcal B}$ syst. error (%)
Signal PDF	4.2
Background PDF	8.8
Peaking background	3.8
B_{tag} efficiency	7.1
Particle identification	1.0
π^0 efficiency	0.5
Tracking efficiency	0.3
τ branching fraction	0.6
MC efficiency statistics	0.4
K_L^0 efficiency	7.3
$\overline{N_{B^+B^-}}$	1.3
Total	14.7

Belle Semileptonic

TABLE III. List of systematic uncertainties.

Source	Relative uncertainty (%)
Continuum description	14.1
Signal reconstruction efficiency	0.6
Background branching fractions	3.1
Efficiency calibration	12.6
τ decay branching fractions	0.2
Histogram PDF shapes	8.5
Best candidate selection	0.4
Charged track reconstruction	0.4
π^0 reconstruction	1.1
Particle identification	0.5
Charged track veto	1.9
Number of $B\bar{B}$ pairs	1.4
Total	21.2

• Pseudo analysis performed on Belle 2 MC

	$\int \mathcal{L}$ (ab $^{-1}$)	1	5	50
	stat. uncertainty (%)	29.2	13.0	4.1
Had. tag	syst. uncertainty (%)	12.6	6.8	4.6
	total uncertainty (%)	31.6	14.7	6.2
	stat. uncertainty (%)	19.0	8.5	2.7
SL. tag	syst. uncertainty (%)	17.9	8.7	4.5
	total uncertainty (%)	26.1	12.2	5.3

William Sutcliffe

Ultimate precision on $|V_{\mu b}|$ from semileptonic

April 18, 2018 20 / 26

 $|V_{ub}|$ from leptonic decays

$||V_{ub}|$ from $B^- o \mu^- ar u_\mu$ decays

Experiment	Upper limit @ 90% C.L.	Comment
Belle	$2.7 imes 10^{-6}$	Fully reconstructed hadronic tag, 711 fb $^{-1}$
Belle	$1.7 imes10^{-6}$	Untagged analysis, 253 fb $^{-1}$
BaBar	$1.0 imes10^{-6}$	Untagged analysis, 468 $ imes$ 10^6 $Bar{B}$ pairs
Belle	$2.9 imes10^{-7}$	Untagged analysis, 711 fb $^{-1}$

- Untagged using CoM p_{μ}^{*}
- Tagged use $p_{\mu}^{B} = m_{B}/2 \implies$ high resolution but smaller statistics.

50 ab^{-1}	\mathcal{B} Stat.	\mathcal{B} Syst.	$ V_{ub} $
Belle II Untagged	$\sim 5\%$	$\sim 5\%$	3-4%
Belle II tagged	$\sim 13\%$	-	-

э

Summary of $|V_{ub}|$ projections

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	7.0	8.0
5 ab^{-1}	1.1	(0.9, 1.0)	1.8	1.7	3.2
50 ab^{-1}	0.4	(0.3, 1.0)	1.2	0.9	1.7
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.7	7.0	7.5
5 ab^{-1}	1.0	(0.8, 0.8)	1.2	1.7	2.1
50 ab^{-1}	0.3	(0.3, 0.8)	0.9	0.9	1.3
V _{ub} inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8
$ V_{ub} B \rightarrow \tau \nu$ (had. tagged)					
711 fb^{-1}	18.0	(7.1, 2.2)	19.5	2.5	19.6
5 ab^{-1}	6.5	(2.7, 2.2)	7.3	1.5	7.5
50 ab^{-1}	2.1	(0.8, 2.2)	3.1	1.0	3.2
$ V_{ub} B \rightarrow \tau \nu$ (SL tagged)					
711 fb^{-1}	11.3	(10.4, 1.9)	15.4	2.5	15.6
5 ab^{-1}	4.2	(4.4, 1.9)	6.1	1.5	6.3
50 ab^{-1}	1.3	(2.3, 1.9)	2.6	1.0	2.8

LHCb	8 fb ⁻¹	22 fb^{-1}	50 fb^{-1}	
$ V_{ub} $	3.8%	3.3%	2.4%	a .

Ultimate precision on $|V_{ub}|$ from semileptonic

э

æ

The future of the UT

Albrecht et al. arXiv:1709.10308v5

Conclusion

- Most precise determination of $|V_{ub}|$ from $\bar{B}^0 \rightarrow \pi^+ l^- \bar{\nu}_l$ decays (untagged).
- Exclusive $\bar{B}^0 \rightarrow \pi^+ l^- \bar{\nu}_l$ uncertainty of 1.3% vs inclusive uncertainty of (3-4.8%)
- Precision tree level determinations of $|V_{ub}|$ and γ will allow a stringent testing of NP in loop level CKM observables.

Belle II Improvements

Backup

Improved algorithms at Belle II

New Full Event Interpretation (FEI) algorithm for tag-side reconstruction

¹ T. Keck; ² J. Gemmler; ² D. Weyland

Tagging ε on MC					
Tag	FR ¹	FEI Belle	FEI Belle II		
Hadronic B ⁺	0.28%	0.76%	0.66%		
SL B ⁺	0.67%	1.80%	1.45%		
Hadronic B ⁰	0.18%	0.46%	0.38%		
SL <i>B</i> ⁰	0.63%	2.04%	1.94%		

¹Belle Full Reconstruction algorithm.

Deep NN based $e^+e^- ightarrow qar{q}$ background suppression

- ∢ 🗗 ▶

William Sutcliffe