BOŠTJAN GOLOB University of Ljubljana/Jozef Stefan Institute & Belle/Belle II Collaboration

University of Ljubljana "Jožef Stefan" Institute GENERAL (PLAN, SPECIFICS, SUBJECTS)

EXAMPLES OF MEASUREMENTS $(E_{MISS}, NEUTRALS, INCLUSIVE)$

SUMMARY

STRATEGIC WORKSHOP IN SWITZERLAND SWICH 2018

General	Inclusive	
	Neutrals	INTRODUCTION
Emiss	Summarv	

TRIPLE APPROACH

(... TO CONTEPMPORARY HIGH ENERGY PHYSICS)

INTENSITY FRONTIER

COSMIC FRONTIER

http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC%20schedule%20beyond%20LS1%20MTP%202015_Freddy_June2015.pd according to Medium Term Plan for 2016-2020, https://cds.cern.ch/record/2053977/files/MTP%202015_FC%205932.pdf

General E _{miss}	Inclusive Neutrals Summary	SPECIFICS
PROPERTIES OF 6+6-0	COLLIDERS	

- (AS COMPARED TO LHC)
- LOW ENERGY
- LOW TRIGGER RATE / EVENT SIZE (30 KHZ 1ST LEVEL, 10 KHZ HIGH LEVEL; 300 KB EVENT SIZE)
- LOW MULTIPLICITY ($\mathcal{O}(10)$)
- GOOD HERMITICITY
- SPECIFIC METHODS FOR FULL EVENT INTERPRETATION (FEI)

FULLY (PARTIALLY) RECONSTRUCT B_{TAG} ; $\rightarrow B_{S/G}$ 4-momentum known Reconstruct h from e.g. $B_{S/G} \rightarrow \tau (\rightarrow h^{\pm} v) v$; NO additional energy in EM calorim.; SIGNAL AT $E_{ECL} \sim 0$;

RECONSTRUCTION OF *B* MESONS WITH INVISIBLE PARTICLES IN FINAL STATE; FEI PERFORMED USING MVA,

 $\mathcal{E}_{_{HAD}} \sim 1\%, P_{_{HAD}} \sim 65\%$ $\mathcal{E}_{_{SL}} \sim 3\%, P_{_{SL}} \sim 30\%$

General	Inclusive	
	Neutrals	SUBJECTS
E_{miss}	Summary	

METHODS AND PROCESSES WHERE BELLE 2 CAN PROVIDE

IMPORTANT INSIGHT INTO NP COMPLEMENTARY TO OTHER EXPERIMENTS:

$$\begin{split} & E_{{}_{MISS}}: \\ & B \to \tau v, B \to X_c \tau v, B \to h v v, B \to X_u \,\ell \, v, D_s \to \tau v, A' \to \chi \chi, \dots \\ & (\text{Semi)Inclusive:} \\ & B \to s \ell \ell, B \to s \gamma, B \to d \gamma, \dots \\ & \text{Neutrals:} \\ & B \to K_S \pi^0 \gamma, B \to \eta' K_S, B \to K_S K_S K_S, \ \tau \to \mu \gamma, D^0 \to h^0 h^0, D^0 \to V \gamma, B_s \to \gamma \gamma, \dots \end{split}$$

N.B.: AT THE INTENSITY FRONTIER BOTH, EXP. AND TH. ACCURACY MUST ~ MATCH IN ORDER TO BE ABLE TO SPOT DEVIATIONS FROM SM;

SUBJECTS CAN BE RE-ORDERED INTO PHYSICS TOPICS: BELLE II PHYSICS GROUPS

-enera
ochera

Em

Inclusive Neutrals Summary

MISSING ENERGY

 $B \rightarrow D^* \tau \nu$

Belle, PRD 94, 072007, 700 fb⁻¹

NEUTRALS

$CPV in B \rightarrow SQQ$

some uncertainties cancel in Δs (VTX RECONSTR., FLAVOR TAG, LIKELIHOOD FIT); BETTER K_s EFF. WITH VTX HITS - LARGER VTX RADIUS, 30%);

Inclusive Neutrals

Summary

VTX RECONSTR. IMPROVED WITH BETTER TRACKING;

B2TIP REPORT

41 NEW PHASES IN MSSM

 $\Delta S = SIN2\phi_1^{\text{eff}} - SIN2\phi_1$

Murten, April 2018

B. Golob, Belle II 11/18

General E _{miss}	Inclusive Neutrals Summary	INCLUSIVE
$B \to X_{s} \ell^{+} \ell^{-}$		

INCLUSIVE MODE: COMPLEMENTARY TO $B \to X_s \gamma$; LOWER HADRONIC UNCERTAINTIES COMPARED TO EXCLUSIVE; COMPLEMENT TO MEAS.'S OF EXCLUSIVE DECAYS; MAIN BKG'S: $CC \to$ SEMIL. DECAYS $BB \to$ SEMIL. B/D DECAYS $BB \to$ SEMIL. B/D DECAYS $B \to J/\psi$ ($\Psi(2S) X_s$ CAN BE REJECTED BY $M(\ell^+\ell^-)$

WITH LARGER STATISTICS FULLY INCLUSIVE STUDY POSSIBLE (AS FOR $B \rightarrow X_s \gamma$); ESTIMATES FOR SUM OF EXCLUSIVE MODES, $M(X_s) < 2$ GeV (CAN BE RELAXED);

B. Golob, Belle II 12/18

General E _{miss}	Inclusive Neutrals Summary	INCLUSIVE
$B \to X_{_S} \ell^+ \ell^-$		

B and diff. decay distrib. (e.g. in $q^2 \& \cos \theta$) depending on Wilson coeff.'s ($C_{7.9.10}$)

COSTRAINTS ON $C_{9.10}^{NP}$ FROM Belle II measurements of \mathcal{B} and А_{FB} @ 50 АВ⁻¹

SM: (0,0)

(N) : N σ contour

: FIT TO CURRENT EXCLUSIVE **OBSERVABLES**

General		Inclusive Neutrals		SUMMARY
E_{miss}		Summary		
	Observables			
		_		
UT angles	$\sin 2\beta$			LHCB "DOMAIN"
	$\alpha [\circ]$			Belle II "domain"
	$\gamma [\circ] (B \to D^{(*)}K^{(*)})$			
<u>Clussia e servica</u>	$2\beta_8(B_s \to J/\psi\phi)$ [rad]			
Gruonic penguins	$S(B \rightarrow \phi K^2)$ $S(B \rightarrow \pi' K^0)$			
	$S(B \to \eta K^0)$ $S(B \to K^0 K^0 K^0)$	• (сомрі	LEMENTARITY!
	$\beta^{\text{eff}}(B \to \phi \phi) \text{[rad]}$			
	$\beta_s^{\text{eff}}(B_s \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$		NOT	ONLY FOR "POLITICAL" REASONS,
Direct CP in hadronic Decay	s $\mathcal{A}(B \to K^0 \pi^0)$		NEEI	DED FOR SYSTEMATIC CHECKS OF
UT sides	V _{cb} incl.		NPS	SIGNALS AND IDENTIFICATION OF
	V _{cb} excl.			
	$ V_{ub} $ incl.		THEI	R NATURE
-	$ V_{ub} $ excl. (had. tag.)			
Leptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$			
	$\mathcal{B}(B \rightarrow \mu \nu)$ [10 ⁻⁶]			
	$R(B \rightarrow D\tau\nu)$ [Had. tag]			
	$R(B \to D^* \tau \nu)^{\dagger}$ [Had. tag]			
Radiative	$\mathcal{B}(B \to X_s \gamma)$			
	$A_{CP}(B \to X_{s,d}\gamma) \ [10^{-2}]$			
	$S(B \to K_S^{\circ} \pi^{\circ} \gamma)$			
	$2\rho_s^{sm}(B_s \to \phi\gamma)$			
	$\frac{S(B \to \rho \gamma)}{B(B \to \gamma \gamma)} [10^{-6}]$			
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) [10^{-6}]$			
Election can pengano	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) [10^{-6}]$			
	$C_7/C_9 (B \to X_s \ell \ell)$			
	$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$			
	$\mathcal{B}(B_s \to \mu \mu) \ [10^{-9}]$			

B. GOLOB, K. TRABELSI, P. URQUIJO, BELLE2-NOTE-PH-2015-002

General E _{miss}		Inclusive Neutrals Summary	SUMMARY
	Observables		
UT angles	$\frac{\sin 2\beta}{\alpha \ [^{\circ}]}$ $\gamma \ [^{\circ}] \ (B \to D^{(*)}K^{(*)})$ $2\beta_s(B_s \to J/\psi\phi) \ [rad]$		LHCB "DOMAIN" BELLE II "DOMAIN"
Gluonic penguins	$S(B \to \phi K^{0})$ $S(B \to \eta' K^{0})$ $S(B \to K_{S}^{0} K_{S}^{0} K_{S}^{0})$ $\beta_{s}^{\text{eff}}(B_{s} \to \phi \phi) \text{ [rad]}$ $\beta_{s}^{\text{eff}}(B_{s} \to K^{*0} \bar{K}^{*0}) \text{ [rad]}$	• (OMPLEMENTARITY! NOT ONLY FOR "POLITICAL" REASONS, NEEDED FOR SYSTEMATIC CHECKS OF NP SIGNALS AND IDENTIFICATION OF
Direct CP in hadronic Decay UT sides	$ \begin{array}{c} \mathcal{A}(B \to K^0 \pi^0) \\ V_{cb} \text{ incl.} \\ V_{cb} \text{ excl.} \end{array} $		THEIR NATURE
Leptonic and Semi-tauonic	$ V_{ub} $ mcl. $ V_{ub} $ excl. (had. tag.) $\mathcal{B}(B \to \tau \nu)$ [10 ⁻⁶] $\mathcal{B}(B \to \mu \nu)$ [10 ⁻⁶] $R(B \to D\tau \nu)$ [Had. tag] $P(B \to D^* \tau \nu)^{[1]}$ [Had. tag]	• 1	NTENSITY FRONTIER EXP'S ABLE TO REAC NP MASS SCALES BEYOND THE REACH OF LHC
Radiative	$\begin{aligned} & \mathcal{R}(B \to D^{-} \tau \nu)^{r} \text{ [rad. tag]} \\ & \mathcal{B}(B \to X_{s} \gamma) \\ & A_{CP}(B \to X_{s,d} \gamma) \text{ [10^{-2}]} \\ & S(B \to K_{S}^{0} \pi^{0} \gamma) \\ & 2\beta_{s}^{\text{eff}}(B_{s} \to \phi \gamma) \\ & S(B \to \rho \gamma) \\ & \mathcal{B}(B_{s} \to \gamma \gamma) \text{ [10^{-6}]} \end{aligned}$		
Electroweak penguins	$ \begin{array}{c} \mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) \ [10^{-6}] \\ \mathcal{B}(B \rightarrow K^{+} \nu \overline{\nu}) \ [10^{-6}] \\ \mathcal{C}_{7}/C_{9} \ (B \rightarrow X_{s} \ell \ell) \\ \mathcal{B}(B_{s} \rightarrow \tau \tau) \ [10^{-3}] \\ \mathcal{B}(B_{s} \rightarrow \mu \mu) \ [10^{-9}] \end{array} $		

B. GOLOB, K. TRABELSI, P. URQUIJO, BELLE2-NOTE-PH-2015-002

REACH

B. Golob, Belle II

General <i>E_{miss}</i>		Inclusive Neutrals Summary	SUMMARY
	Observables		
UT angles	$\frac{\sin 2\beta}{\alpha \ [^{\circ}]}$ $\gamma \ [^{\circ}] \ (B \to D^{(*)}K^{(*)})$ $2\beta_s(B_s \to J/\psi\phi) \ [rad]$	•	LHCB "DOMAIN" BELLE II "DOMAIN"
Gluonic penguins	$\begin{split} S(B \to \phi K^{0}) \\ \hline S(B \to \eta' K^{0}) \\ S(B \to K^{0}_{S} K^{0}_{S} K^{0}_{S}) \\ \hline \beta^{\text{eff}}_{s}(B_{s} \to \phi \phi) \text{ [rad]} \\ \beta^{\text{eff}}_{s}(B_{s} \to K^{*0} \bar{K}^{*0}) \text{ [rad]} \end{split}$		NOT ONLY FOR "POLITICAL" REASONS, NEEDED FOR SYSTEMATIC CHECKS OF NP SIGNALS AND IDENTIFICATION OF
Direct CP in hadronic Decay UT sides	ys $\mathcal{A}(B \to K^0 \pi^0)$ $ V_{cb} $ incl. $ V_{cb} $ excl.		THEIR NATURE
Leptonic and Semi-tauonic	$ \begin{array}{l} V_{ub} \ \text{mcl.} \\ \hline V_{ub} \ \text{excl.} \ \ \left(\text{had. tag.}\right) \\ \hline \mathcal{B}(B \to \tau \nu) \ \left[10^{-6}\right] \\ \hline \mathcal{B}(B \to \mu \nu) \ \left[10^{-6}\right] \\ \hline R(B \to D \tau \nu) \ \ \left[\text{Had. tag}\right] \\ \hline R(B \to D^* \tau \nu)^{\dagger} \ \left[\text{Had. tag}\right] \\ \hline \end{array} $	זו • ז ן	NTENSITY FRONTIER EXP'S ABLE TO REACH NP MASS SCALES BEYOND THE REACH OF _HC
Radiative	$\begin{split} \mathcal{B}(B \to X_s \gamma) \\ A_{CP}(B \to X_{s,d} \gamma) & [10^{-2}] \\ S(B \to K_S^0 \pi^0 \gamma) \\ 2\beta_s^{\mathrm{eff}}(B_s \to \phi \gamma) \\ S(B \to \rho \gamma) \\ \mathcal{B}(B_s \to \gamma \gamma) & [10^{-6}] \end{split}$	• E F F	BELLE II WILL IN 2019 – ~2025 PERFORM RICH PROGRAM OF (VERY) RARE PROCESSES (VERY) SENSITIVE TO NP
Electroweak penguins	$\begin{split} \mathcal{B}(B \to K^{*+}\nu\overline{\nu}) & [10^{-6}] \\ \mathcal{B}(B \to K^{+}\nu\overline{\nu}) & [10^{-6}] \\ C_{7}/C_{9} & (B \to X_{s}\ell\ell) \\ \mathcal{B}(B_{s} \to \tau\tau) & [10^{-3}] \\ \mathcal{B}(B_{s} \to \mu\mu) & [10^{-9}] \end{split}$	• E H I	AGERLY EXPECTING HIGH LUMINOSITY DATATAKING WITH BELLE II

B. GOLOB, K. TRABELSI, P. URQUIJO, BELLE2-NOTE-PH-2015-002

REACH

 E_{miss}

ADDITIONAL MATERIAL

MODELS

Murten, April 2018

B. Golob, Belle II 20/18

Inclusive Neutrals Summary

SUPERKEKB

ACCELERATOR

"SUPERKEKB"

SUPERKEKB:

θ⁻ (HER): 7.0 GEV *θ*⁺ (LER): 4.0 GEV

 $E_{CMS} = M(Y(4S))c^{2}$ $(\rightarrow B\overline{B})$

 $[M(Y(1S))c^2, M(Y(6S))c^2]$

 $dN_f/dt = \sigma(e^+e \rightarrow f)\mathcal{L}$

 $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

PROPERTIES OF e^+e^- Colliders (AS COMPARED TO LHC)

- LOW ENERGY
- LOW TRIGGER RATE / EVENT SIZE

(30 KHZ 1ST LEVEL, 10 KHZ HIGH LEVEL; 300 KB EVENT SIZE)

• LOW MULTIPLICITY ($\mathcal{O}(10)$)

Murten, April 2018

B. Golob, Belle II 22/18

Inclusive Neutrals Summary

SEMIL. TAGGING

$B \rightarrow \tau v, \ Hvv, X_c \tau v, \dots$

Full reconstruction (hadronic tagging)

or

partial reconstruction (semileptonic tagging):

$$\cos\theta_{B-D^*\ell} \equiv \frac{2E_{\text{beam}}E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B| \cdot |\vec{p}_{D^*\ell}|}$$

BOOST

B. Golob, Belle II 24/18

P.M. LEWIS ET AL., ARXIV:1802.01366

SEPARATION OF TOUSCHEK AND BEAMGAS (BREMSSTHRALUNG+COULOMB SCATTERING) CONTRIB.

SPECTRUM OF FAST NEUTRONS

Murten, April 2018

B. Golob, Belle II 25/18

General E _{miss}	Inclusive Neutrals Summary	PHASE 2

STATUS:

PHASE 2 (FULL BELLE II W/O SVD) STARTED MARCH 19, ONGOING UNTIL JULY; BOTH BEAMS SUCCESSFULLY STORED, COLLISIONS EXPECTED IN ~ WEEK

General E _{miss}	Inclusive Neutrals Summary	PHASE 2	
PHASE 2 (FULL BELL	E II W/O SVD) STARTED	MARCH 19	
HER .080 [A] 1394 LER .000 [A] 1576 Luminosity .000 (now) .000 (pe Integ. Lum0 (Fill) .0 (Day) .0 (2	[bunches] HER Vacuum Scrubbing [bunches] LER Orbit Tuning ak in 24H @6:57) [/nb/sec] 24H) [/pb]	Phase-2 started: 2018/03/19 HER stored beam: 2018/03/21 3/31/2018 20:13 JST	
$\begin{array}{c} 0.1 \\ HER \\ 0.08 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.04 \\ 0.04 \\ CLIBBENT \\ 0.04 \\ $		1000 1000 1000 1000 10 ⁵ 24H SUPERI 10 ⁶ HISTORY	KEKB

General	Inclusive
	Neutrals
E_{miss}	Summary
	· · · · · ·

BEAM SQUEEZING

B. Golob, Belle II 29/18

n.b.: *σ(R(D*))/R(D*)*~2.5% @ 20 ab⁻¹

B. Golob, Belle II 32/18

General	Inclusive	a. a
	Neutrals	$B \to X_{-} \ell^{+} \ell^{-}$
E_{miss}	Summary	

 $B \to X_{S} \ell^{+} \ell^{-}$

DIFF. DISTRIBUTION

 $q^2 = M^2(\ell^*\ell^-)$

 $S=q^2/M_b^2$

z=cosθ

 $\frac{d^2\Gamma}{dq^2dz} = \frac{3}{8} \left[(1+z^2)H_T(q^2) + 2zH_A(q^2) + 2(1-z^2)H_L(q^2) \right]$

 θ

$$\frac{dA_{\rm FB}}{dq^2} = \int_{-1}^{+1} dz \, \frac{d^2\Gamma}{dq^2 dz} \, \text{sgn}(z) = \frac{3}{4} \, H_A(q^2) \,,$$
$$\frac{d\Gamma}{dq^2} = \int_{-1}^{+1} dz \, \frac{d^2\Gamma}{dq^2 dz} = H_T(q^2) + H_L(q^2)$$

K.S.M. LEE ET AL., PHYS. REV., D75, 034016 (2007);A. ALI ET AL., PHYS. LETT., B273, 505 (1991)

$$H_T(q^2) = 2\hat{s}(1-\hat{s})^2 \left[\left| C_9 + \frac{2}{\hat{s}} C_7 \right|^2 + \left| C_{10} \right|^2 \right]$$
$$H_L(q^2) = (1-\hat{s})^2 \left[\left| C_9 + 2 C_7 \right|^2 + \left| C_{10} \right|^2 \right],$$
$$H_A(q^2) = -4\hat{s} (1-\hat{s})^2 \operatorname{Re} \left[C_{10} \left(C_9 + \frac{2}{\hat{s}} C_7 \right) \right]$$

B. Golob, Belle II 35/18

General	Inclusive	
	Neutrals	$B \rightarrow S \mathcal{T} \mathcal{T}$
E_{miss}	Summary	2

$B \rightarrow S T T$

PROBABLY NOT OBSERVED EVEN WITH FULL STAT.;

 $BR(B \to K^* \tau \tau) < 2.10^{-5} @ 50 \text{ AB-1}$ $BR_{SM}(B \to K^* \tau \tau) \sim 1.10^{-7}$

compared to K^*vv (with additional two tracks from t)

- USING HAD. TAGGING ONLY (TOO MANY *V*'S IN SEMIL. TAG) $N(K^{*}\tau\tau)/N(K^{*}vv) \sim (\mathcal{E}_{HAD}/(\mathcal{E}_{HAD} + \mathcal{E}_{SL})) [BR(B \to K^{*}\tau\tau) / BR(B \to K^{*}vv)] BR(\tau)$ $\sim \frac{1}{2} \qquad 10^{-2} \qquad 0.1 \sim 5 \cdot 10^{-2}$ $+ SOME BKG FROM B \to X_{c} (\to X_{s} \ell v) \ell v$

B. Golob, Belle II 37/18

A_{DET}: DETECTOR INDUCED ASYMMETRY

$$A_{CP} = (-0.8 \pm 2.9)\% \text{ HFag, 2014}$$

SM: $A_{CP} \sim (0.44 \pm ^{0.24} \text{_{0.14}})\%$
T. Hurth et al., Nucl.Phys. B704, 56 (2005)

 A_{DET} : CAREFUL STUDY OF K/ π asymmetries in (P, θ_{lab}) USING D decays or inclusive TRACKS FROM FRAGMENTATION;

LOTS OF WORK ON SYSTEM., \rightarrow FEW 10⁻³ EXP. SENSITIVITY

SEMI-INCLUSIVE METHOD MOST ACCURATE (UNCERTAINTY STAT. DOMINATED)

B. GOLOB, K. TRABELSI, P. URQUIJO, BELLE2-NOTE-PH-2015-002

Murten, April 2018

B. Golob, Belle II 38/18

B. Golob, Belle II 40/18

B. Golob, Belle II 41/18

General E _{miss}	Inclusive Neutrals Summary			LFV	
		UL00%	S	implified (1	D) toy MC
Search for $\tau \rightarrow$	μγ	$\mathcal{B}(\tau \rightarrow \mu \gamma $ [10 ⁻⁸]	⁴		
w/o polarization: UL _{90%} ($\mathcal{B}(\tau \rightarrow \mu \gamma)$)) ~ 2x10 ⁻⁹ @ 50 ab [.]	-1	1 1	~ x1/£	× .
w/ polarization: factor ~(2-3)x better s	ensitivity		0.4.4 0.3 0.2.2	$\sim \infty$:1/√£ .
decays $\tau \rightarrow 3\ell, \ell h$ UL _{90%} ($\mathcal{B}(\tau \rightarrow \mu \gamma)$)	⁰ background free) $\sim \propto 1/ \mathcal{L}$ to ~10ab	-1	o 10).2 1 CLEO	$ \begin{array}{ccc} 1^{\circ}0 & \mathcal{L}[ab^{-1}] \\ \hline 0 & \tau \rightarrow \mu \gamma \\ \hline \Delta & \tau \rightarrow \mu\mu\mu \end{array} $
$\mathcal{B}(\tau \rightarrow \mu \gamma) < 4.4 \cdot 1$	0-8		∃ 10 ⁻⁷		• τ→μγ • τ→μη • τ→μμμ
Belle, PLB666, 16 (2008)	, 535 fb⁻¹		10 -8	B factor (Belle Ba	ries aBar)
Updated expected	d sensitivities		10 -9	C Ne	Ild estimation
K. Inami, PANIC 2011			[10	-3 10 ⁻² 10 ⁻¹	$\frac{1}{10}$ Luminosity (ab ⁻¹)

B. Golob, Belle II 42/18