Status and prospects of Belle II at SuperKEKB

Ilya Komarov on behalf of Belle II ilya.komarov@desy.de

SuperKEKB

Status and improvements since KEKB

e⁺e⁻ accelerator located in Tsukuba, Japan

Built in tunnels of KEKB, but is almost entirely new machine:

• x20 smaller beam focus at interaction region

• Doubled beam currents

This yields x40 higher peak luminosity (8x10³⁴ cm⁻²s⁻¹)

First beams in 2016 First collisions: next month

The Belle II detector

Design and key performance numbers

Belle II schedule

Phase 1: first beams Goal: Main ring commissioning

Phase 2: first collisions Goal: Establish nano-beam scheme and reach KEKB luminosity Goal: Understand backgrounds

Phase 3 luminosity milestones:

1ab⁻¹ after one year of data taking 5ab⁻¹ mid 2020 50ab⁻¹ by 2025

Belle II at Phase 2

Special conditions and unique opportunities

- Belle II and SuperKEKB will soon start collecting data of the first collisions during the Phase 2 of commissioning.
- We aim to get 20-40 fb⁻¹ of data in e⁺e⁻ collisions
- Phase II special conditions:
 - Dedicated detector that includes VXD sector and radiation monitors (BEAST II) is installed to measure radiation and backgrounds levels.
 Will be replaced by VXD in Phase 3.
 - To demonstrate the nano-beam scheme, we will reach 1x10³⁴cm⁻²s⁻¹ instantaneous luminosity, 1.25% of the SuperKEKB design.
 - Low initial luminosity allows to open up triggers for low-multiplicity events

BEAST II detector after assembly on the central beam pipe

Time for physics searches going hand in hand with detector studies!

An example of Physics at Phase II

Dark photon search

Dark matter manifests itself in numerous cosmological and astrophysical observations, but yet is not discovered in laboratory environment.

- Dark sector can be connected to the SM through the Dark Photon A': it has kinetic mixing with γ of strength ε .
- One of experimental signatures for this signal is a single photon in the detector with the recoil mass peaking at the mass of A'.
- Biggest challenge: performance study of the photon detection.
- Improvement of BaBar results already at 20 fb-1!

Towards First Physics: Dark Photon.

Dark Photon motivated by dark matter, g-2 anomal Minimal dark matter model: Dark matter particle x and a new scalar or gauge boson A' as s-channel Signal photon n mediator $(m_{A'} > 2m_{y})$ *Holdom, Phys. Lett B166. >Additional U(1) recoil mass $Y \rightarrow$ "Kinetic Mixing"* of massive dark photon A' with the SM photon Beam background $\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu}$

An example of Physics at Phase II

Dark photon search

Dark matter manifests itself in numerous cosmological and astrophysical observations, but yet is **not discovered in laboratory environment**.

- Dark sector can be connected to the SM through the Dark Photon A': it has kinetic mixing with γ of strength ε.
- One of experimental signatures for this signal is a single photon in the detector with the recoil mass peaking at the mass of A'.
- Biggest challenge: performance study of the photon detection.
- Improvement of BaBar results already at 20 fb⁻¹!

Belle II physics programme

Belle II has a rich physics programme that is being summarised in a single document (664 pages now):

- Leptonic and semileptonic B decays
- Radiative and EWP B decays
- Precise measurements of CKM parameters
- Charm physics
- Quarkonium physics
- Tau physics
- BSM searches

Impossible to cover everything in short talk, but lets discuss some planned measurements showing key features of Belle II.

P	Prog. 7	Cheor. Exp. Phys. 2018 , 00000 (664 pages) DOI: 10.1093/ptep/0000000000
The	Belle II Physics Book	
Emi K comm	ou ¹ , Phillip Urquijo ² , The Belle II collabo mity ³	oration ³ , and The B2TiP theory
¹ LAL ² Melbo	nurne	2/2010
	The report of the Belle II Theory Interface	Platform is presented in this document.
	Contents	PAGE
1	Preface	9
	1.1 The Belle II Theory Interface platform	n 9
	1.2 Working Groups	9
	1.3 Committees	10
	1.4 Workshops	10
	1.5 Acknowledgements	10
2	Introduction	11
	2.1 Introduction	11
	2.2 New physics search strategy after the	B-factories and LHC run I and
	run II first data	12
	2.3 Flavour physics questions to be addre	ssed by Belle II 13
	2.4 Non-flavour program physics case	14
	2.5 Advantages of SuperKEKB and Belle	11 15
	2.6 Overview of SuperKEKB	16
	2.7 Data taking overview	17
×.	2.8 Overview of this book	18
	2.8.1 Global fits	22
0	2.9 The Belle II Golden Flavour Channel	s 22
3	Belle II Detector	28
	3.1 Introduction	28
	3.2 Vertex detector (VAD)	29
	3.5 Central Drift Chamber (CDC)	ad A DICH) 20
	5.4 Farticle identification system (TOP a	110 ARICH) 30
	3.5 Electromagnetic Calorimeter (ECL)	31
	3.0 AL- Muon Detector (KLM)	32
	3.7 Ingger System	33
	2.0 Detector commissioning place	35
A	a.a Detector commissioning phases	35
4	Belle II Simulation	38

② The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-ec/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Link to the current status

Belle II Key techniques

Full event interpretation

At Belle II, B-mesons are produced in pairs during decay of the $\Upsilon(4S)$. This is just above the bb threshold, i.e. only the two B-mesons are produced in the collision.

If we fully reconstruct one B-meson decay than we can study final states with missing energy because the initial state is well known.

Useful variable here is missed 4-momentum:

$$p_{\text{miss}} = (p_{\text{beam}} - p_{\text{Btag}} - p_{\text{Signal}})$$

R(D) and R(D*) measurement

Combined R(D)/R(D*) measurement is 4σ away from the SM prediction

$$\mathscr{R}(D^{(*)}) = rac{\mathscr{B}(B o D^{(*)} au ar{v}_{ au})}{\mathscr{B}(B o D^{(*)} l ar{v}_l)}$$

Belle II R(D) measurement strategy:

- Using the **Full Event Interpretation (FEI)** algorithm: reconstruct both B-mesons to missed momentum of signal candidate.
- Discriminate signal $(B \rightarrow D^{(*)}\tau\overline{\nu})$, normalisation $(B \rightarrow D^{(*)}\ell\overline{\nu}, \ell=\mu,e)$ and backgrounds events in 2D fit to $(m_{miss}^2; |p_l|)$ plane

Current World Average precision for $R(D^{(*)})$ is 12%(6%). With only 5ab⁻¹ Belle II will measure both values twice more precise according to simulations study

Belle II Key techniques

Time-dependent CP violation

As with the FEI technique, measurement of the TD CPV requires reconstruction of the both mesons.

Unlike FEI, we don't need to fully reconstruct the tag B: we only need to find its decay vertex and flavour.

$$<\Delta z > \sim 130 \ \mu m$$
 at Belle II

$$a_{f}(\Delta t) \equiv \frac{\Gamma_{\bar{B}^{0} \to f}(\Delta t) - \Gamma_{B^{0} \to f}(\Delta t)}{\Gamma_{\bar{B}^{0} \to f}(\Delta t) + \Gamma_{B^{0} \to f}(\Delta t)} =$$
$$= \mathcal{S}_{f} \sin(\Delta m \Delta t) + \mathcal{A}_{f} \cos(\Delta m \Delta t)$$

 Δt and A_{cp} distributions for CP-odd (left) and CP-even (right) $B \rightarrow (cc)K^0$ modes [Phys. Rev. Lett. 108 171802]

Time-dependent CP violation in penguin-dominated decays

Theory gives clean constraints on $\Delta S_f = S_f - (\sin \phi_1)_{ccs}$ for penguindominated b \rightarrow qqs (q = u, d, s) processes, while the experiment is behind in precision.

 $B{\rightarrow}\eta'K^{0}$ has among the strictest predictions here:

 $\Delta S_{\eta'K0}^{QCDF} = 0.01 \pm 0.01$ $\Delta S_{\eta'K0}^{Data} = -0.05 \pm 0.06$

- Belle II will test several combinations for the final states:
 - $\eta' \rightarrow \eta(\gamma \gamma) \pi^+ \pi^-; \eta' \rightarrow \eta(\pi^+ \pi^- \pi^0) \pi^+ \pi^-; \eta' \rightarrow \rho \gamma;$
 - $K_S \rightarrow \pi^+\pi^-$; $K_S \rightarrow \pi^0\pi^0$; K_L
- Key components of the measurement:
 - **Tagging**: Effective tagging efficiency is ~37%
 - Vertexing: signal ∆t resolution is 20% better than for Belle
 - Sensitivity to neutrals: 23% selection efficiency for $B \rightarrow \eta'(\rightarrow \eta(\gamma \gamma) \pi^+ \pi^-) K^{0}_{s}$ final state

Current World Average precision for $S_{\eta'K0}$ is 10%. With only 5ab⁻¹ Belle II will measure it twice as precise according to simulation

Belle II Key features

Belle II as a tau factory

Belle II is the best laboratory to study τ physics:

- High rate of the tau: 45x10⁹ τ⁺ τ ⁻ pairs are expected in the full dataset.
 σ(ee → ττ) ≈ 0.91nb; σ(ee → bb) ≈ 1.05nb
- Clean environment: exclusive production of τ pairs in e⁺e⁻ $\rightarrow \tau^+ \tau^-$

Belle II reconstruction procedure for τ :

- For each reconstructed τ we calculate invariant mass and $\Delta E = E_{\tau}^{CM} = E_{beam}^{CM}/2$
- Use event shape variables to discriminate from non-tau backgrounds ($e^+e^- \rightarrow q\overline{q}$)
- For neutrinoless τ decays (CLFV searches), the missing momentum of the tag side can also be used as a discriminating variable

Charged Lepton Flavour Violation in τ decays

 $\tau \rightarrow \mu \gamma$ decays are prohibited in SM (Br($\tau \rightarrow \mu \gamma$)~10⁻⁴⁰) and among the most sensitive to loop-generated CLFV.

Signal events peak in (ΔE ; M_{$\mu\gamma$}) plane.

Belle II expected sensitivity at 50 ab⁻¹ is Br($\tau \rightarrow \mu \gamma$)<10⁻⁹

Model	$Br(\tau \rightarrow \mu \gamma)$	Source
SUSY+GUT	10-7	PRD 66(2002)11501
SUSY SO(10)	10 ⁻⁸	PRD 68(2003)033012
SM+ heavy v_{R}	10 ⁻⁹	PRD 66(2002)034008
Non-universal Z'	10 ⁻⁹	PLB 547(2002)252
Little Higgs	10 -10	JHEP 0705, 013 (2007)
SUSY Higgs	10 -10	PLB 566(2003)217
SM	10-40	EPJ C8 (1999) 513

Energy scan of heavy bottomonium

Inner structure of heavy hadrons above the open flavour limit is still unclear: are there XYZ states, analogous to charmonium case?

- Cross-sections around 10.75 have different behaviour for BB, $h_b(nP)\pi\pi$ and $\Upsilon(nS)\pi\pi$ states
- Belle II will make precise scan of the region and decompose cross-sections to different BB states, that are predicted to have rich structure
- Scans beyond $\Upsilon(6S)$ will investigate new resonances around new thresholds

No other experiment, running or planned, can address the open topics in bottomonium physics

Current samples in fb^{-1} (millions of events), and the proposal for Belle II

Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$	$\frac{\Upsilon(nS)}{\Upsilon(4S)}$
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-	23%
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan	11%
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5	23%
BelleII	-	-	300 (1200)	$5 \times 10^4 (5.4 \times 10^4)$	1000 (300)	100+400(scan)	3.6%

Summary

- Next month Belle II will start collect data from the first collisions (without the vertex detector)
- The goal for this year's data taking is to understand the machine and backgrounds, but early physics program aimed at low multiplicity physics is also planned
- By the end of the year, vertex detector will be installed and Belle II will start data taking fully operational in early 2019
- Rich physics programme with plenty of unique measurements
- Looking forward to the first results

