Dark sector physics with Belle II

Peter M. Lewis for the Belle II Collaboration
University of Hawaiʻi at Mānoa

22 February 2018
UCLA Dark Matter 2018
SuperKEKB

The super B-factory at KEK

- First-generation B-factory at Tsukuba, Japan:
 - KEKB: accelerator (world record luminosity)
 - Belle: detector
- Asymmetric-energy 10.57 GeV electron-positron collider
- Instantaneous luminosity: $8 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ [40 times KEKB]
- Integrated luminosity: 50 ab^{-1} [50 times KEKB]
 - “Nano-beam” scheme (right, showing positron and electron bunches crossing)
 - Doubled beam currents
- First collisions this spring! Exciting times!
Belle II

Central beam pipe: 2cm diameter, Beryllium with gold coating on inside

Vertexing: new 2 layers of pixels, 4 double-sided layers of silicon strips

Tracking: 14336-wire drift chamber

PID: time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: CsI(Tl) crystals

K_{L} and μ: scintillators (endcap and inner two layers of barrel) and RPCs (remainder of barrel)
Near-term operations

“Phase 2” run

- 2016: First beams (“Phase 1”)
- Current: global cosmic run
- This spring: “Phase 2”
 - Primary purpose: commission nano-beams
 - Target: KEKB instantaneous luminosity ($\leq 20\text{fb}^{-1}$ integrated)
 - Vertexing detectors absent
- But, with smart trigger design we can get competitive dark sector sensitivity:
 - New trigger modes
 - Flexible trigger firmware

Phase 2

Phase 3: final configuration
Event display from global Belle II cosmic run (last week)
Dark matter searches at Belle II

(Some) Phase 2 physics prospects

- **Vector** portal: dark photon A' to invisible

- **Pseudoscalar** portal: axion-like particles a (ALPs)
Dark matter searches at Belle II

(Some) Phase 2 physics prospects

- **Vector** portal: dark photon A' to invisible

 $e^- \rightarrow \gamma \rightarrow A' \rightarrow \chi_1$

- **Pseudoscalar** portal: axion-like particles a (ALPs)

 $e^+ \rightarrow a \rightarrow \gamma^* \rightarrow \gamma \rightarrow \chi_2$
Dark photon to invisible

A distinctive signature

- **Single photon** from initial state radiation
- SM photon mixes with massive dark photon A'
- If DM is light enough, A' decays to invisible light DM particles
- **Signature:**
 - Single, mono-energetic, high-E photon
 - Peak in recoil mass (dark photon mass)
Dark photon to invisible

A special trigger

- **Single-photon trigger:**
 - None in Belle
 - Only for short time in BaBar (53fb^{-1})

- **Advantages over BaBar:**
 - More-hermetic calorimeter
 - Larger calorimeter coverage
 - Photons cannot escape between crystals due to a slight rotation in θ and ϕ
 - Lower energy asymmetry

Belle II Phase 2 run with single-photon trigger should be competitive
Dark photon to invisible

Backgrounds

- ~No true physics backgrounds
- Missing particle backgrounds:
 - $e^+e^- \rightarrow \gamma\gamma$ (top)
 - Radiative Bhabha $e^+e^- \rightarrow e^+e^-\gamma$
- Final state particles get “lost” in cracks (top)
 - BaBar had no backwards endcap calorimeter and cracks between each crystal (bottom)
Dark photon to invisible

Phase 2 expectations

- **Single-photon trigger**
 - Exactly one cluster >1GeV, none other >300MeV
 - Rate dominated by $e^+e^- \rightarrow e^+e^-\gamma$
 - Single-photon trigger ~ 0.5kHz [of 8kHz max]
 - May be able to use in Phase 3

- **Handling backgrounds**
 - Peaking $e^+e^- \rightarrow \gamma\gamma(\gamma)$ dominates analysis (right)
 - The key: quantify photon efficiency

- **Key strength**
 - Low backgrounds \rightarrow good sensitivity for **low-mass** dark photons

Belle II MC with 1.8GeV single-photon trigger
Dark photon to invisible: projected sensitivity

Disclaimer: relic density lines assume a standard cosmological history and that there is only a single component of dark matter, which only interacts via dark photon exchange.
Dark matter searches at Belle II

(Some) Phase 2 physics prospects

- **Vector** portal: dark photon A' to invisible

- **Pseudoscalar** portal: axion-like particles a (ALPs)
Axion-like particles

Three-photon final state

- ALPs couple to bosons
 - No relation between mass and coupling
 - Photon coupling $g_{a\gamma\gamma}$ targetable in Phase 2
- Signature
 - Three photons $> 0.1\text{GeV}$ in calorimeter
 - Pair of photons from $a\rightarrow\gamma\gamma$
 - Single recoil photon
- Search for a
 - Bump in invariant $\gamma\gamma$ mass spectrum
 - Multiplicity of three; we don’t know which photon is which

Simulated calorimeter event with reducible background
ALPs

Calorimeter signature

- Mass m_a and coupling $g_{a\gamma\gamma}$ determine
 - Displacement from collision point (r_D)
 - Opening angle θ of decay photons
- Four signatures:
 - Resolved: prompt decay, large θ
 - Merged: prompt decay, small θ
 - Displaced: (ignore; indistinguishable from $e^+e^- \rightarrow \gamma\gamma$)
 - Invisible: decay outside Belle, single-photon final state
ALPs

Phase 2 considerations

● Backgrounds
 ○ $e^+e^- \rightarrow \gamma\gamma(\gamma)$ with 0 or 1 γ from beam background
 ○ Resolved: $e^+e^- \rightarrow \pi^0\gamma, \eta\gamma, \eta'\gamma$

● Trigger
 ○ Resolved: relax $e^+e^- \rightarrow \gamma\gamma$ prescale in trigger
 ○ Invisible: single-photon trigger (also captures prompt $a \rightarrow$ invisible)
ALPs: projected sensitivity

Conclusions

Belle II dark sector

- Belle II has **unique** sensitivity to ALPs and dark photons, even in low-luminosity **Phase 2**:
 - Specially designed triggers
 - Lower background than BaBar
 - Complementary to searches at SHiP and LHC
- Other Phase 2 dark-sector searches could include:
 - Dark photon → pseudo-Dirac DM
 - Off-shell A' decays
 - Magnetic monopoles with small magnetic charges (additional slides)
 - Muonic dark force with dark boson Z': $e^+e^- \rightarrow \mu^+\mu^-Z', Z' \rightarrow$ invisible
- **Phase 3** (to final luminosity)
 - Can use Phase 2 trigger for early Phase 3 runs too
 - Dark photon coupling to leptons: $A' \rightarrow l^+l^-$
 - A lot more...
Thank you!
Magnetic monopoles

Another Phase 2 specialty

- Search for magnetons with small magnetic charge
- **Distinct signature** in drift chamber: seen on-end, tracks will be straight
- **Special trigger:**
 - Trigger on any track that crosses all cells of inner drift chamber
 - Trigger in Phase 3 may be too tight
- Detection efficiency is **high**: 40-97%, depending on magneton mass