

Exotics at Belle & Perspectives at Belle II

12.03.2018 | Elisabetta Prencipe

Excited QCD Workshop 2018, 11-15 March 2018 (Kopaonik, Serbia)

Outline

- Introduction
- Recent achievements in spectroscopy at Belle:
 - \square overview of Y states via ISR production mechanism
 - \blacksquare Z charged states: can they come from Y states?
 - \square the X^{*}(3860) new results in 2017!
 - ☑ search for glueballs and pentaquarks new results in 2017!
 - \blacksquare bottomonium: main achievements and future perspectives
- Open questions and possible interpretation
- The Belle II experiment phase II successfully started
- Perspectives in search for exotics at Belle II
- Summary

Introduction

- Gell-Mann Zweig idea: Constituent Quark Model (CQM). Still valid since half century → it classifies all known hadrons
- QCD-motivated models predict the existence of hadrons with more complex structures than simple qq (mesons) or qqq (baryons). These are the so-called XYZ "charmonium"-like states
- Lot of experimental effort to prove the existence of XYZ!
- No unambiguous evidence for hadrons with non-CQM like structures has been found
- New possibilities, started with the observation of the X(3872):
 - tetraquarks molecular states pentaquarks glueballs
 - hybrids hadrocharmonium hexaquarks cusps
- Evidence that there is more than mesons and baryons! Substantial contribution from Belle to into the field

Mitglied der Helmholtz-Gemeinschaft

Quark Bound States

Charmonium Spectrum

 Overall agreement experiments-theory so far: precision ~2-3 MeV; but....

JÜLICH Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

For >30 years theory and experiments agreed. Then something happened.

How has the story begun?

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

For >30 years theory and experiments agreed. Then something happened.

How has the story begun?

Phys. Rev. Lett. 91 (2003) 262001 Belle, accepted 23 December 2003 Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ Decays

CITED 1630 times!

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Remark

 $B(B \text{ decay}) \times B(X(3872) \text{ decay}) \simeq 10^{-5}$

Small! B factory needed to search for it

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

The KEK Facility in Tsukuba (Japan)


```
Recorded luminosity =

1.02 ab^{-1}

On resonance :

Y(5S): 121 fb^{-1}

Y(4S): 711 fb^{-1}

Y(3S): 3 fb^{-1}

Y(2S): 25 fb^{-1}

Y(1S): 6 fb^{-1}

Off reson./scan:

\sim 100 fb^{-1}
```

Peak luminosity achieved: $2.1 \times 10^{34} \text{cm}^2/\text{s}^{-1}$ $\beta \gamma = 0.42$ $p(e^-) = 8.0 \text{ GeV/c}$ $p(e^+) = 3.5 \text{ GeV/c}$ Crossing angle = 22 mrad

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Y Family - Summary

Contribution from Belle

		((
Y(40	(80	4008±40 ⁺¹¹⁴ ₋₂₈	226±44±87
Y(42	260)	4258.6±8.3±12.1	134.1±16.4±5.5
Y(43	60)	4361±9±9	74±15±10
Y(46	60)	4664±11±5	48±15±3

Mass (MeV/c^2)

Width (MeV)

- ISR studies: unique at B factories
- Clear signature: J^{PC} = 1⁻⁻
- No mixing surprising!

Z Charged States

Main achievements at Belle

First observation: Belle, PRL 100 (2008) 142001; Confirmed by LHCb: PRD 92(2015) 112009 BESIII confirmation: PRL 110 (2013) 252001

Two different classes of Z states?

Understanding the pattern e- machines only $[\overline{D}D]$ $[\overline{D}D^*]$ $[\overline{D}D_1]$ $[\overline{D}^*D^*]$ $[\overline{D}^*D^*]$ $[\overline{D}D]$ $[\overline{D}D^*]$ I = 01 L=01 1 1 0 1 0 0 1 5 Mass / GeV Mass / GeV Z(4430) Z_2 Z(4200) $Z_c(4025) Z_c(4020)$ Z_1 $\overline{D}^* D^*$ $\overline{D}D^*$ $Z_{c}(3900)$ $\overline{D}D$ $Z_{c}(3885)$ from e+e- (direct) or ISR from B meson decays JP 0^+ $1^ 1^+$ $2^ 1^ 2^+$ 0^+ 1^+ 2^+ $1^ 2^ 3^ 1^{-}$ 1^{+} 2^{-} 1^{-} 2^{+} 0^{+} 1^{+} 2^{+} 1^{-} 2^{-} 3^{-} 0^{+} narrow widths - large widths near thresholds – not connected to thresholds?

X^{*}(3860): New State in $e^+e^- \rightarrow J/\psi \overline{D}D$

PRD 95 (2017) 112003

- Mass constraint to improve the mass resolution
- PWA

Mitglied der Helmholtz-Gemeinschaft

Search for Pentaquarks P at Belle

PRD 96 (2017) 051102

What can we do more?

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

From Belle to Belle II

What has been changed?

PXD, vertex resolution in z direction (beam direction) will be factor 2 better than before:

50 μ m (Belle) \rightarrow 25 μ m (Belle II)

- TOP: no TOF (time-of-flight) detector anymore, but TOP (time-of-propagation) will do the timing of the Cerenkov light. Time resolution ~50 ps. TOP detector surface is polished to nanometer precision for total reflection of Cerenkov light (~0.5M \$ per 1 Quartz bar)
- KLM: inner 2 layers of barrel + all layers in the endcap replaced by scintillators, because of large background
- ECL readout electronics exchanged, fast FADC sampling for identify pileup of pulses
- Huge gain in luminosity in Belle II compared to Belle: factor x40. How?

 factor 2 by beam current: 1.64/1.19 A (Belle) → 3.6/2.6 A for e⁺(e⁻) beam in Belle II

- factor 20 by "nano-beam" principle (collision point in vertical direction will be only 59 nm) $\beta_u(z) = \beta_u^*(1 + \frac{(z - Z_0)^2}{z})$

 $\beta^*_{\ _{V}}$ function: 5.9 mm (Belle), 0.27 mm (Belle II)

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

 $\beta_{y}(z) = \beta_{y}^{*}(1 + \frac{(z - Z_{0})^{2}}{\beta_{y}^{*2}})$ $\sigma_{y}(z) \propto \sqrt{\beta_{y}(z)}$ Seite 17 JÜLICHForschungszentrum

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

21.06.2016: LER beam current exceeded 1A

Phase-I operation at Belle II: detector commissioning

x40 more luminosity => higher background

Phase-II data for background study, detector alignment and response (2018)

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Vertex Pixel Detector (PXD)

VXD consists of 2 layers of DEPFET (Pixel Detector) and 4 layers of double-sided silicon microstrip sensors (Silicon Vertex Detector), assembled over carbon fiber ribs.

One of the 40 sensor modules which are being installed in the pixel-vertex detector

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Cerenkov detector, laser in TOP module

Particle Identification

(<u>Time-of-propagation</u>, t \leq 50 ps)

Photo: K. Inami (Nagoya)

JÜLICH Forschungszentrum

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

TOP installation, finished on 06.2016

Modules form a self-supporting arc

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Particle Identification: MC Study

Efficiency and fake rates

07.04.2017: Roll-in

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

15.01.2018: MILESTONE!

Superconductive magnet systems installed

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

February 2018: Belle II Ready To Start!

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

14.02.2018: Phase-II Has Started

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

14.02.2018: Phase-II Has Started

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

18.02.2018 - First Data Cosmics in the PXD

- Two inner sub-detectors right now into the data acquisition system.
- The final Belle II vertex detector with its full *pixelated* silicon detector (PXD) and a doublesided microstrip silicon detector (SVD) is under construction and will be installed later this year.

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

26.02.2018 – First Data Cosmics in the ARICH

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Which are the main improvements expected in spectroscopy with Belle II?

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

XYZ Expectations at Belle II

- Yield of X(3872)→J/ $\psi\pi^+\pi^-$ in 2020 will be about Belle yield of $\psi' \rightarrow J/\psi\pi^+\pi^-$ The width of the X(3872) could be measured with a systematic error of ±0.11 MeV
- Width measurement possible in X(3872)→J/ψγ: expected yield N≈350 in 2020 (scaled from Belle, Phys. Rev. Lett. 107(2011)091803), a factor x2 more than X(3872)→J/ψπ⁺π⁻ at Belle, full dataset
 → monoenergetic photon provides 4⁻constraint fit (∆E/E~2%)
 → systematic error on width may be ~110 keV

Expected Luminosity at Belle II

Why Bottomonium at Belle II?

Bottomonium spectrum is significantly different from charmonium spectrum

n=3 state (^{3}P) is below the threshold

- L=2 state (¹D) is below the threshold
- \blacksquare Z $_{\rm b}$ states were only found so far in Y(5S) decays
- SuperKEKB can reach $\sqrt{s}=11$ GeV $\Rightarrow \Upsilon(6S)$ running possible – unique possibility!
- With the high luminosity, for the 1st time study radiative transitions between bottomonia states possible (suppressed by 1/137). Marginal statistics so far at Belle, <u>big advantage at Belle II</u>

Main Achievements in Bottomonium at Belle

Summary from PRL 116 (2016) 212001

Channel	Fraction, %			
	$Z_b(10610)$	$Z_b(10650)$		
$\Upsilon(1S)\pi^+$	$0.54_{-0.13-0.08}^{+0.16+0.11}$	$0.17\substack{+0.07+0.03\\-0.06-0.02}$		
$\Upsilon(2S)\pi^+$	$3.62^{+0.76+0.79}_{-0.59-0.53}$	$1.39\substack{+0.48+0.34\\-0.38-0.23}$		
$\Upsilon(3S)\pi^+$	$2.15\substack{+0.55+0.60\\-0.42-0.43}$	$1.63\substack{+0.53+0.39\\-0.42-0.28}$		
$h_b(1P)\pi^+$	$3.45\substack{+0.87+0.86\\-0.71-0.63}$	$8.41_{-2.12-1.06}^{+2.43+1.49}$		
$h_b(2P)\pi^+$	$4.67^{+1.24+1.18}_{-1.00-0.89}$	$14.7^{+3.2+2.8}_{-2.8-2.3}$		
$B^+ar{B}^{*0}+ar{B}^0B^{*+}$	$85.6^{+1.5+1.5}_{-2.0-2.1}$			
$B^{*+}ar{B}^{*0}$		$73.7^{+3.4+2.7}_{-4.4-3.5}$		

Branching Ratios

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Expectations on Z_b states at Belle II

Channel	Belle	BaBar	Belle II (per year)	
$Bar{B}$	7.7×10^8	$4.8 imes 10^8$	$1.1 imes 10^{10}$	
$B_s^{(*)}ar{B}_s^{(*)}$	$7.0 imes 10^6$	_	6.0×10^8	
$\Upsilon(1S)$	1.0×10^8		$1.8 imes 10^{11}$	
$\Upsilon(2S)$	$1.7 imes 10^8$	0.9×10^7	$7.0 imes 10^{10}$	
$\Upsilon(3S)$	$1.0 imes 10^7$	$1.0 imes 10^8$	$3.7 imes10^{10}$ $^{ imes10}$	33 KEKB Peak Luminosity
$\Upsilon(5S)$	$3.6 imes10^7$	-	3.0×10^{9}	
au au	1.0×10^9	$0.6 imes 10^9$	$1.0 imes 10^{10}$	
with full luminosity, assuming 100% running:			ning:	

- 20 days/month

- 9 months/year

2000 2002 2004 2006 2008 2010 3.85 years year

Summary

- Great achievements with Belle (~ 1 ab⁻¹) in spectroscopy: analyses still ongoing after so many years
- Z_{b} in $\Upsilon(5S) \rightarrow \pi^{+}\pi^{-}\Upsilon(nS)$, $\Upsilon(6S) \rightarrow \pi^{+}\pi^{-}h_{b}(nP)$ and $\Upsilon(6S) \rightarrow [B^{(*)}B^{(*)}]^{+}\pi^{-}$
- Search for Pentaquarks started with Belle data, but only UL so far
- No significant signal found for glueballs with $\Upsilon(1S, 2S)$ samples.
- Promising start of phase-II in Belle II: experiment in good shape!
 First cosmics seen already 1 month ago
- Expected 50 ab⁻¹ integrated luminosity at Belle II in 10 years
- With x50 more data than Belle, expected in Belle II great achievements in hadron spectroscopy:
 - ISR analysis as unique case
 - favorite Bottomonium search through Υ (6S)

e.prencipe@fz-juelich.de

"The greatest danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieve our mark." (Michelangelo, 1475 - 1564)

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Backup slides

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

Luminosity at the B Factories

~ 550 fb⁻¹ **On resonance:** $Y(4S): 433 \text{ fb}^{-1}$ $Y(3S): 30 \text{ fb}^{-1}$ $Y(2S): 14 \text{ fb}^{-1}$ **Off resonance:** $\sim 54 \text{ fb}^{-1}$

Mitglied der Helmholtz-Gemeinschaft

Charmonium Production at B Factories

Search for 0⁻⁻ glueballs

PRD 95 (2017) 012001

250

200

150

100F

MeV/c^z

Events/30

- Proposed production channels: $\Upsilon(1S, 2S) \rightarrow \chi_{c1}G_0^{--}, f_1(1285)^+G_0^{--}; \chi_{b1} \rightarrow J/\psi G_0^{--}, \omega^+G_0^{--}$
- Mixing with guarkonia makes their search difficult

 Υ (1S, 2S) $\rightarrow \chi_{c1}G_0^-$

Search for 0⁻⁻ glueballs

Upper limit on BR of the order of 10⁻⁵-10⁻⁶ @ 90% c.l.

Main Achievements in Bottomonium at Belle

Main Achievements in Bottomonium at Belle

Z_{b} in Y(5S) $\rightarrow \pi^{+}\pi^{-}Y(nS)$

		52 S	
Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z,\pm(10610)\pi^{\pm}},\%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV/ c^2	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z^{\mp}(10650)\pi^{\pm}},\%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV/ c^2	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67 \pm 36^{+24}_{-52}$	$-10 \pm 13^{+34}_{-12}$	$-5 \pm 22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40 \pm 0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07^{+0.32}_{-0.11}$	$0.69 \pm 0.09^{+0.18}_{-0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-9.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	-
$f_{\Upsilon(nS)(\pi^+\pi^-)_S}, \%$	$86.5 \pm 3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+0.5}_{-3.5}$	$44.0 \pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$	<u></u>	
$\sigma_{Z_b^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} =$	$109 \pm 27^{+35}_{-10}$ fb σ	$\mathcal{B}_{Z_b^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)^{\pm}}$	$_{\pi\mp} = 20 \pm 7^{+4}_{-3}$ f
$T_{\pi^{\pm}}(\mu_{0},\mu_{0}) = X \mathcal{B}_{\pi}(\mu_{0},\mu_{0}) = T =$	$737 \pm 126^{+188}$ fb a	$T_{\pi^+}(x_{2},x_{2}) = X B_{\pi}(x_{2},x_{2})$	$_{-\pi} = 165 \pm 49^{+43}$ f

$$\sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} = 438 \pm 92_{-114}^{+92} \text{ fb} \qquad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} = 194 \pm 53_{-25}^{+43} \text{ fb}$$

Z_⊾ in Y(5S)→B^(*)B^(*)π⁻ + c.c. $\blacktriangleright BB\pi = \overline{B}^0B^+\pi^-+c.c.$ One B is reconstructed • $BB^*\pi = \overline{B}^{*0}B^+\pi^-+c.c./\overline{B}^0B^{*+}\pi^-+c.c.$ • Select a bachelor π^{\pm} $\mathbf{O} \mathsf{B}^*\mathsf{B}^*\pi = \mathbf{B}^{*0}\mathsf{B}^{*+}\pi^- + \mathbf{c.c.}$ Check $B\pi$ recoil mass **►**B π e+ arXiv:1512.07419, PRL 116, 212001 (2016) 3000 1800 18 B decay modes combined 1600 2500 B*B* MeV/c^2 0/1400 Μ⁰/1200 B background 12263±168 BB' 2000 BB **B** signals Nevents/4 1500 1000 B sidebands 500 200 0 0 5.5 0.5 2.5 3 3.5 1.5 5.1 5.2 5.3 5.4 2 M(B), GeV/c^2 P(B), GeV/c $B^{(*)}B^{(*)}\pi + \overline{B}B\gamma$ qq background

 $N(BB\pi) = 13 \pm 25$ $N(BB^*\pi) = 357 \pm 30$ $N(B^*B^*\pi) = 161 \pm 21$

Mitglied der Helmholtz-Gemeinschaft

12- March 2018'

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

 $M_{X(3872)} = (3871.85\pm0.27(stat)\pm0.19(syst)) \text{ MeV}$ $B(B^+ \rightarrow K^+X(3872)) \times B(X(3872) \rightarrow \pi^+\pi^-J/\psi) =$ (8.63±0.82(stat)±0.52(syst))×10⁻⁶ $B(B0 \rightarrow K^0X(3872))/B(B+ \rightarrow K^+X(3872)) =$ 0.50±0.14(stat)±0.04(syst) ΔM_{X[B0-B+]} = (-0.71±0.96(stat)±0.19(syst)) MeV.

- X(3872) observed in different decay modes, and <u>different production mechanisms</u>
- At $D\overline{D}^*$ threshold $E_B = 160\pm330$ keV, but no threshold effect
- $\Gamma \leq 1.2 \text{ MeV} \rightarrow \text{ too narrow!}$ Bugg, JPHG35 (2008) 075005
- The DD* decay of the X(3872) is dominant
 - ~ x10 than other X(3872) decay modes \rightarrow a molecule?
- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho)$, ~10² too large

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

- Correlation function from MC
 Γ (output) = f(Γ (input))
- 3-dim fits validated with ψ width Γ_{ψ} =0.52±0.11 MeV (PDG: 0.304±0.009 MeV) \rightarrow bias 0.23±0.11 MeV
- procedure for upper limit: width in 3-dim fit fixed n_{signal} and n_{BG} floating → calculate likelihood
- $\Gamma_{X(3872)} < 0.95 \text{ MeV} + \text{bias}$

Reference channel: $B \rightarrow \psi(2s)\pi^+\pi^-$

X(3872): ACHIEVEMENTS AND INTERPRETATION AT BELLE

- Isospin-violating decay: $B(X(3872) \rightarrow J/\psi\rho), \text{ factor } 10^2 \text{ too large}$ $J^{PC} = 1^{++}, \text{ predicted nearby } \chi_{c1}'$
 - Barnes et al, PRD72 (2005) 054026
- Mass ≥50 MeV higher
- Width ≥100 larger

What can be done better to disclose the nature of the X(3872)?

X(3872)

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Seite 52

Forschungszentrum

Photoproduction of X(3872)

Muon data 2003-2010 $N_{\psi(2S)} = 16.1 \pm 5.2$ $N_{X(3872)} = 13.9 \pm 4.9$ $\sigma_M=20.6{\pm}6.1~\text{MeV}$

COMPASS, arXiv:1707.01796 [hep-ex]

Mitglied der Helmholtz-Gemeinschaft

Is the X(3872) exotic ?

TETRAQUARK

[qQ]₈[qQ]₈ Diquarks are colored

Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Faustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang

THRESHOLD CUSP

MOLECULE

Intriguing Analogon

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Guo, Hanhart, Meissner

courtesy of J.S. Lange, HIRSCHEGG2018

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Y(4260)

BESIII, Phys. Rev. Lett. 118 (9) (2017) 092001

Mitglied der Helmholtz-Gemeinschaft

Y(4260) parameters

3	BABAR	CLEO-c	Belle	Belle	BABAR	BABAR	BESIII
\mathcal{L}	$211 \ {\rm fb^{-1}}$	$13.3 { m ~fb^{-1}}$	$553 { m ~fb^{-1}}$	$548 \ {\rm fb^{-1}}$	$454 {\rm ~fb^{-1}}$	454 fb^{-1}	9 fb^{-1}
Ν	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	324 ± 21	344 ± 39		3853 ± 68
S	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq 15\sigma$	S 		7.6σ
m	$4259 \pm 8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295 \pm 10^{+10}_{-3}$	$4247 \pm 12^{+17}_{-32}$	$4252 \pm 6^{+2}_{-3}$	$4244\pm5\pm4$	$4222.0 \pm 3.1 \pm 1.4$
Г	$88 \pm 23^{+6}_{-4}$	70_{-25}^{+40}	$133 \pm 26^{+13}_{-6}$	$108 \pm 19 \pm 10$	$105 \pm 18^{+4}_{-6}$	$114^{+16}_{-15}\pm7$	$44.1 {\pm} 4.3 {\pm} 2.0$

BaBar, Phys. Rev. Lett. 95(2005)142001
CLEO-c, Phys. Rev. D74(2006)091104
Belle, arXiv:hep-ex/0612006
Belle, Phys. Rev. Lett. 99(2007)182004
BaBar, arXiv:08081543[hep-ex]
BaBar, Phys. Rev. D86(2012)051102
BESIII, Phys. Rev. Lett. 118(2017)092001

Recent hot topic: mass in direct e+eseems lower than in ISR

Is the Y(4260) exotic ?

TETRAQUARK

higher excitation ?

Maiani, Riquer, Piccinini, Polosa, Burns

MOLECULE heavier mesons $(\overline{D}D_1(2460))$?

[Swanson, Rosner, Close Guo, Hanhart, Meissner

HADRO-CHARMONIUM $[J/\psi f_0(980)]$

Voloshin, Li (Guo, Hanhart, Meissner)

HYBRID

[QQ]₈g

Zhu; Kou, Pene; Close, Page; Lattice QCD, Bernard et al.; Mei, Luo courtesy of J.S. Lange, HIRSCHEGG2018

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Y STATES

Cornell–Potential

Eichten, Gottfried, et al. PRD 17(1978)3090 Barnes, Godfrey, Swanson, PRD 72(2005)054026

Coulomb-Potential k=0 5 GeV/fm + Confinement-Term $V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$ V(r) [GeV] spin-spin $+\frac{32\pi\alpha_s}{9m^2}\delta_r\vec{S_c}\vec{S_c}$ *k*=1.5 GeV/fm 0 spin-orbit $+\frac{1}{m^2}(\frac{2\alpha_s}{r^3}-\frac{k}{2r})\vec{L}\vec{S}$ $-\frac{4\alpha_s}{3r}$ V(r)tensor $+\frac{1}{m^2}\frac{4\alpha_s}{r^3}(\frac{3\vec{S_c}\vec{r}\cdot\vec{S_c}\vec{r}}{r^2}-\vec{S_c}\vec{S_c})$ solve Schrödinger equation (quark mass heavy \rightarrow on-relativistic) -3 0,5 10 Notation →states r [fm] $n^{2S+1}L_{1}$ $\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$ $\left[-\frac{1}{m_a}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_a r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$ IPC

Mitglied der Helmholtz-Gemeinschaft

Cornell potential: Wronski-Determinant must be zero at turning point

- m=4.660 GeV → turning point of wave function is 2.2 fm!
- large fraction of wave function in string breaking regime r>1.4 fm

courtesy of J.S. Lange, HIRSCHEGG2018

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Mitglied der Helmholtz-Gemeinschaft

12- March 2018

Z STATES AT BESIII

Recent hot topic: neutral partners \rightarrow isospin triplets All of them 1+, whereever tested.

Mitglied der Helmholtz-Gemeinschaft

Z states and "confinement" ? All measured Z_c^+ masses are <u>above</u> $D^{(*)}\overline{D}^{(*)}$ thresholds

State	$m \; ({\rm MeV})$	Threshold	$\Delta m \; (\text{MeV})$
$Z_c(3900)$	$3899.0{\pm}3.6{\pm}4.9$	$D^+\overline{D}^{0*}$	+22.4
$Z_{c}(3900)$	$3899.0 {\pm} 3.6 {\pm} 4.9$	$D^0\overline{D}^{+*}$	+23.9
$Z_{c}(3900)$	$3894.5{\pm}6.6{\pm}4.5$	$D^+\overline{D}^{0*}$	+17.9
$Z_{c}(3900)$	$3894.5 {\pm} 6.6 {\pm} 4.5$	$D^0\overline{D}^{+*}$	+19.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1$	$D^+\overline{D}^{0*}$	+8.4
$Z_{c}(3900)$	$3885{\pm}5{\pm}1~{\rm MeV}$	$D^0\overline{D}^{+*}$	+9.9
$Z_c(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^+\overline{D}^{0*}$	+7.4
$Z_c(3885)$	$3883.9 {\pm} 1.5 {\pm} 4.2$	$D^0\overline{D}^{+*}$	+8.8
$Z_{c}(4020)$	$4022.9{\pm}0.8{\pm}2.7$	$D^{0*}\overline{D}^{\pm *}$	+5.6
$Z_{c}(4025)$	$4026.3{\pm}2.6{\pm}3.7$	$D^{0*}\overline{D}^{\pm *}$	+9.0
$Z_c(4032)^+$	$\simeq 4032.1{\pm}2.4$	$D^{0*}\overline{D}^{\pm *}$	+15.0

	possible?
threshold CUSP	no (must be @ threshold)
tetraquark	yes (spin–spin forces)
molecules	no, if bound state (pole below threshold, $E_B>0$)

Mitglied der Helmholtz-Gemeinschaft