

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Facebook @Belle2collab

Status and prospects of flavor physics at the Belle II experiment

K. Matsuoka (KMI, Nagoya Univ.) for the Belle II collaboration

PACIFIC 2018, Kiroro, Hokkaido, Feb. 19, 2018

Contents

- Introduction: Flavor Physics
- Prospects of a part of Flavor Physics at Belle II
- Status and schedule of Belle II / SuperKEKB
- □ Summary

Flavor Physics

In the Standard Model, quark flavor transition processes are described by Cabibbo-Kobayashi-Maskawa (CKM) matrix.

B-factories produce a large number of B, D, τ , etc. and can extensively test the CKM paradigm.

The B factory legacy

Beyond Standard Model

- The Standard Model has been tested greatly up to the weak scale, O(100) GeV.
- However we know the Standard Model is not satisfactory to explain
 - Flavor structure
 - baryon asymmetry
 - dark matter
 - dark energy

• ...

Search for New Physics in HEP

Direct search (energy frontier: LHC)

Direct production of new particles; limited by the beam energy

Indirect search (intensity frontier: SuperKEKB, etc.)

- Precise investigation of virtual effects of new particles
 - The Standard Model must be the effective theory at $E \ll \Lambda_{\rm NP}$.

 $\mathcal{M} \propto \frac{c_{\text{NP}}^2}{\Lambda_{\text{NP}}^2}$ Larger statistics \rightarrow higher energy scale / smaller coupling

cf. Fermi theory

d -

$$\mathcal{M}_{\rm SM} = \langle \mathbf{p} | J^h_{\mu} | \mathbf{n} \rangle \frac{g^2}{8} \frac{1}{q^2 - M_{\rm W}^2} \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{M_{\rm W}^2} \right) \langle \bar{\mathbf{v}}_{\rm e} \mathbf{e}^- | J^{\ell}_{\nu} | \mathbf{0} \rangle$$

Process sensitive to New Physics

Flavor Changing Neutral Current (FCNC)

Occur only via a loop diagram due to GIM mechanism, and moreover is highly suppressed.

e.g. in case that virtual effect of X appears with the same amplitude as the Standard Model ($\mathcal{M}_{SM} = \mathcal{M}_{NP}$): $\Lambda_{NP} = c_{NP} \frac{4\pi}{eg} M_W \sqrt{\frac{1}{V_{ts}^* V_{tb}}} = O(10 \text{ TeV}) \quad (c_{NP} \sim 1)$

Flavor anomalies

Belle II strategy for New Physics

- **D** Statistics: KEKB ~1 $ab^{-1} \rightarrow SuperKEKB 50 ab^{-1} \approx 5e10 B\overline{B}$ pairs
- Prediction of the Standard Model with small theoretical uncertainties
- Precise measurement with small systematic uncertainties

Features

- Collision at (or close to) Y(4S)
 - Well-known initial energy
 - No extra interactions
- Tagging one of the B's to infer the other B charge, flavor, momentum.

<u>Observables</u>

- Forbidden decays
- Enhanced/suppressed decay rate
- Asymmetries (CP, isospin)
- Angular distributions

Lepton universality in $B \rightarrow D^{(*)}\tau v$

$$R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}\ell\nu)} \quad (\ell = e \text{ or } \mu)$$

• Partial cancellation of theoretical uncertainties related to hadronic effects and measurement systematics.

 $P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-} \quad (\Gamma^{\pm}: \text{ decay rate of } \pm \tau - \text{helicity})$

• Another probe of New Physics

W⁺/H⁺

Lepton universality in $B \rightarrow K^* \ell^+ \ell^-$

$$\mathcal{M} = \frac{G_F \alpha_{\rm EM}}{\sqrt{2}\pi} V_{ts}^* V_{tb} \{ \overline{b} = \frac{V_{ts}^* V_{tb}}{C_9^{\rm eff} \langle K^* | \bar{s} \gamma_\mu P_L b | B \rangle (\bar{\ell} \gamma^\mu \ell)} \overline{b} = \frac{V_{ts}^* \ell}{W^+} \overline{s}$$

$$-2 m_b / q^2 \cdot C_7^{\rm eff} \langle K^* | \bar{s} i \sigma_{\mu\nu} q^\nu P_R b | B \rangle (\bar{\ell} \gamma^\mu \ell)$$

$$+ C_{10} \langle K^* | \bar{s} \gamma_\mu P_L b | B \rangle (\bar{\ell} \gamma^\mu \gamma_5 \ell) \}$$

$$\overline{b} = \frac{W_{ts}^+ \ell}{\bar{s} \gamma_\mu P_L b | B \rangle (\bar{\ell} \gamma^\mu \gamma_5 \ell)}$$

- 1

Lepton universality in $B \to K^* \ell^+ \ell^-$

13

Exclusive global fit / B $\rightarrow X_{s}\ell^{+}\ell^{-}$ $B \rightarrow K^{*}\ell^{+}\ell^{-}, B \rightarrow \mu^{+}\mu^{-}, B \rightarrow K^{*}\gamma$

Direct CP asymmetry in $B \rightarrow K\pi$

- Difference of CP asymmetry between B⁰ and B⁺
 - ► Enhanced C?
 - ► QCD?

 $B^+ \rightarrow K^+ \pi^0$: $T + P + C + P_{FW} + P^C_{FW} + A$

Direct CP asymmetry in $B \rightarrow K\pi$

Lepton flavor violating τ decays ... FCNC in the lepton sector

Dark sectors

- New triggers will be used in Belle II to search for dark matter and dark photons.
 - Single photon trigger with ~1 GeV threshold to search for dark photon decaying into light dark matter

Prospect

Strategies to increase luminosity

Major upgrades for SuperKEKB

Schedule

Belle II and the whole SuperKEKB have been connected together, getting ready for the beam in March and first collision in April!

Feb.12, 2018

Summary

- Belle II aims to search for New Physics in the flavor sector with 50 ab⁻¹ data collected at SuperKEKB.
 - FCNC is one of the sensitive processes to New Physics and holds some anomalies.
 - Should be tested with higher statistics and less theoretical and experimental uncertainties.

After long construction, SuperKEKB / Belle II is finally about to collide the nano-beams and take data. Exciting time is coming soon!