Belle II prospects for CP-violation measurements

Chiara La Licata for the Belle II Collaboration

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

Cracow - 10 Jan 2018

The Unitarity Triangle

- Quark interactions described by the V_{CKM} unitary matrix
- Unitarity relations represented by triangles in complex plane

Belle II goal \rightarrow test the SM and search for non SM physics using precision measurements at the intensity frontier through measurements of the triangle parameters

10 successful years:

first generation of asymmetric B factories BaBar and Belle collected about 1.5 ab⁻¹ of data during 1999 – 2010 → significant contribution to the understanding of the flavour dynamics in the Standard Model

 Discovery of CP violation in B meson transitions and confirmation of the CKM description of flavour physics

 Precision measurement of the CKM matrix elements and the angles of the unitarity triangle

 Constraints on various new physics models

- Observation of several new hadronic states
- Strong evidence of D meson mixing

Next generation B factory

SuperKEKB – major upgrade of the KEKB B factory at KEK

- Doubled beam currents
- Reduced beam spot size (nano beam scheme)

L_{peak}: 8x10³⁵ cm⁻²s⁻¹ (40 x KEKB) L_{int}: 50ab⁻¹ by 2025 (50 x KEKB)

From Belle to Belle 2

Many upgrades to increase the performance and cope with more severe background conditions

Vertex Detector

- 2 pixel layers
- 4 layers of double-sided silicon microstrip sensors
- →Extended region

Central drift chamber

- Small cell size, longer lever arm

EM calorimeter

- upgrade of electronics
- CsI + CsI(TI) crystals (high light output, short X₀)

K_L and muon detector

-some RPCs layers substituted with scintillators

J F N

From Belle to Belle 2

Many upgrades to increase the performance and cope with much more severe background conditions

Vertex Detector

- 2 pixel layers
- 4 layers of Si double side
- →Extended VXD region

Central drift chamber

- Small cell size, longer le

- gain in robustness against beam-related background
- improvement in impact parameter resolution
- 30% increase Ks efficiency
- improved K/ π separation with π fake rate decreases by ${\sim}2.5$
- improved π^0 reconstruction

EM calorimeter

- upgrade of electronics
- CsI + CsI(TI) crystals (high light output, short X₀)

K_L and muon detector

-some RPCs layers substituted with scintillators

Phase 1 (Feb - June 2016): beam storage, vacuum scrubbing, optics studies, no collisions
Phase 2 (2018): first collisions, complete Belle II detector except for Vertex Detector
Phase 3 (late 2018 - 2024): full Belle II detector

All plots and performance figures shown today are based on simulation

decay time-dependent measurements

Interference between B– \overline{B} mixing and B decay amplitudes \rightarrow time-dependent CP asymmetry

Belle II performance: Vertex fit

FN

Belle II performance: Flavour tagger

- Determine the flavor of the accompanying B⁰ meson at the time of its decay
- Many B decay channels provide unambiguous flavor signatures through a flavor-specific final state but it is unfeasible to fully reconstruct a large number of flavor-specific B_{tag} decays.
- Instead of a full reconstruction, the flavor tagger applies inclusive techniques (in semileptonic B→Dlv decays charge of the lepton identifies the flavour of the B meson)

Advanced tagging algorithm is expected to provide high **tagging efficiency:**

 $\varepsilon_{EFF} = 35.84\% \ (\varepsilon_{EFF} = 30.04\%)$

 φ_2 can be extracted from mixing-induced CP violation in b \rightarrow uud transitions

The most precise way to determine φ_2 is based on applying the isospin [M. Gronau and D. London, PRL 65 3381] measurement to B $\rightarrow \pi \pi \pi$ and B $\rightarrow \rho \rho$

To disentangle the tree contribution and extract $\Delta \phi_{2:}$

$$\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$$
$$\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$$
$$A^{+0} = \bar{A}^{-0} \text{ (pure tree)}$$
with $\bar{A}^{+-} = \mathcal{A}(\bar{B} \to \rho^+ \rho^-)$

2: A_{00} $\frac{1}{\sqrt{2}}A_{+-}$ $\frac{1}{\sqrt{2}}\overline{A}_{+-}$ A_{00} $2\Delta\phi_{2}$ $A_{+0} = \overline{A}_{-0}$

currently $\varphi_2 = (94.2\pm5)^\circ, (166.4\pm0.8)^\circ$

- Branching fractions and CP violation parameters are the input parameters of the isospin analysis
- At present no enough data to perform a time dependent CP-analysis of the decay mode B $\rightarrow \pi^0 \pi^0$
- $S^{\pi 0\pi 0}$ is an important input for isospin analysis \rightarrow Belle2 opens new possibilities

 $(\varphi_2 = \alpha)$

 $sin(2\varphi_2)$: B $\rightarrow \rho\rho$

 $(\varphi_2 = \alpha)$

Belle II prospects for CP-violation measurements

 $\varphi_3: B \rightarrow DK$

The most powerful methods for measuring this angle are based on the interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$ tree amplitudes with different weak and strong phases in the charged B decays to charm final state: $B^{\pm} \rightarrow DK$.

There are several methods to measure ϕ_3 that can be grouped according to the choice of the final state. Belle II golden mode: Dalitz-plot analysis of self- conjugate D decays (GGSZ) [PRD68, 054018 (2003)]

$$\varphi_3 = (78^{+15} - 16)^\circ$$
 Belle measurement \longrightarrow precision on φ_3 is an order worse than φ_1 . Can be improved significantly by experimental advantages alone $\varphi_3 = (76.8^{+5.1} - 5.7)^\circ$ LHCb measurement

 $(\varphi_3 = \gamma$

 φ_3 : GGSZ method

• The first sensitivity study of Belle II for φ_3 applies the GGSZ analysis of $B^{\pm} \rightarrow (K_s^0 \pi^+ \pi^-)_D K^{\pm}$

Dalitz binning used for model- independent analysis

 $(\varphi_3 = \gamma)$

- · Dalitz plane is divided into a number of diagonally-symmetric bins.
- For each bin numbers of $B^{\pm} \rightarrow DK^{\pm}$ decays are measured
- D decay strong phases difference between D and D
 decays for each bin of Dalitz plot are essential
 inputs to interpret the measurements related to φ₃. (defined on charm-factories, the systematic
 uncertainty on these measurements will become more significant with future running of both Belle II
 and LHCb)

 φ_3 : projections

 $(\varphi_3 = \gamma)$

In Belle measurements using other D decay modes (ADS, GLW techniques) have been performed. Therefore, ϕ_3 programme at Belle II must at least include all these modes and possibly others to realise its full potential.

extrapolation with a combination of other D modes

Further improvements are possible as several $B \rightarrow DK$ modes have not been exploited in Belle

$$δφ_3 = 1.6^\circ$$
 at 50 ab⁻¹

the extrapolation is predicated on there being sufficient BESIII data collected at the $\psi(3770)$, approximately 10 fb⁻¹, to determine the strong-phase difference parameters required.

Belle II and LHCb will be in competition in ϕ 3 sensitivity:

- LHCb will clearly have more precise results in fully- charged final states
- Belle II sensitivity to neutrals will allows to include more D modes

expected sensitivity for LHCb and Belle II experiments

$sin(2\varphi_1)$ from $b \rightarrow c\overline{c}s$: status

The angle ϕ 1 can be measured in processes with a tree dominant interaction (B \rightarrow J/ ψ K⁰s) or with penguin quark transitions ($B \rightarrow \phi K^{0}_{s}, B \rightarrow \eta' K^{0}_{s}$)

The "golden mode" is $B \rightarrow J/\psi K^{0}_{s}$. Advantages of this decay channel for sin2 ϕ 1 measurement:

- J/ψ clean signature relatively large branching fraction, so a large signal yield is expected contribution of penguin diagrams expected to be less than 1% $ar{B}^0$ K_S
 - penguin pollution $ar{B}^0$ K_S

currently $\varphi_1 = (21.4 \pm 0.8)^\circ$

 $S_{J/\psi K0s} = 0.670 \pm 0.029(stat) \pm 0.013(syst)$ $C_{J/\psi K0s} = -0.015 \pm 0.021(stat) + 0.045 - 0.045$ (syst) $S_{ccs} = 0.667 \pm 0.023(stat) \pm 0.012(syst)$ $C_{ccs} = 0.006 \pm 0.016(stat) \pm 0.012(syst)$

Belle [PRL 108 171802]

 $(\varphi_1 = \beta)$

Belle II the measurement will be dominated by systematics

2 irreducible systematic errors: - vertex reconstruction

Expected an experimental precision better than 1% on φ_1

$sin(2\varphi_1)$ from $b \rightarrow q\overline{q}s$

Complementary determination of φ_1 through $b \rightarrow qqs$ (q = u, d, s) are dominated by penguin transitions. More sensitive to non SM physics effects.

B→*φ* K⁰s

BaBar [arXiv:1201.5897] and Belle [arXiv:1007.3848] extracted the B_d $\rightarrow \phi K^0$ CP asymmetry parameters from time-dependent analysis of the K+K-K⁰ final state:

	cu	rrent va	average	
φK0	-ηS Α		+0.11 -0.13 ±0.14	

- more complex η^{\prime} decay channel

larger branching fraction (x10)

 $(\varphi_1 = \beta)$

no competition with LHCb expected due to neutrals in the final state

BaBar [arXiv:0809.1174] and Belle [arXiv:1408.5991] collaborations performed the CP-violation analyses for this channel :

$$egin{aligned} S_{\eta'K^0_S} &= +0.57 \pm 0.08 \pm 0.02 (ext{BaBar}) \ S_{\eta'K^0_S} &= +0.68 \pm 0.07 \pm 0.03 (ext{Belle}) \end{aligned}$$

 $ar{B}^0$

The IVub parameter can be measured through exclusive and inclusive semileptonic B decays

The most promising channel for exclusive IV_{Ub}I measurements at Belle II is $B \rightarrow \pi Iv$

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{24\pi^3} \mathbf{p}_{\pi}^3 |f_+^{B\pi}(q^2)|^2$$

proportional to $|V_{Ub}|$ and to the B $\rightarrow \pi$ form factor

Form factor through QCD based calculation. its uncertainty limits the precision on Vub but a factor 5 improvement is expected

- IV_{ub}I is extracted from the differential B → X_uIv rate in various phase space regions
- IV_{ub}I value extracted from the fit to the differential B → X_uIv rates with a fit model defined from simulation.

• B \rightarrow X_UIv rate measurement complicated by B \rightarrow X_CIv background

 predictions of shapes of these functions depend on the dynamic of the decaying b quark → limiting factor for the inclusive I V_{ub}I determination

CURRENT VALUES:

 $|V_{ub}^{excl}| = (3.67 \pm 0.09(exp) \pm 0.12(theo)) \times 10^{-3}$ $|V_{ub}^{incl}| = (4.52 \pm 0.15(exp) + 0.11(theo)) \times 10^{-3}$

3 standard deviation discrepancy

V_{ub}: exclusive measurement

The most promising channel for exclusive IV_{ub}I measurements at Belle II is $B \rightarrow \pi Iv$

"Hadronic Tagged" measurement

- Exact momentum of companion B gives good q² resolution
- $\varepsilon = 0.55\%$ (0.3%@Belle)
- Improvement w.r.t. Belle is due to the better tagging algorithms

"Untagged" measurement

- Indirect determination of companion B momentum spoils q² resolution.
- ε = 20% (11%@Belle)
- Improvement w.r.t. Belle is due to the better **ROE** handling

Vub: inclusive measurement

Events with one fully reconstructed tag-side B meson candidate and at least one lepton track for signal candidate are selected

To improve IV_{ub}l precision Belle II will exploit modelindependent parametrisation of shape function. [arXiv:0807.1926]

Such parametrisation includes $B \rightarrow X_S \gamma$ data (as the dynamic of the b quark in such process coincides with that for the B $\rightarrow X_U Iv$ at leading order)

Factor 2 improvement: expected precision of inclusive IV_{ub}I at 5(50) ab⁻¹ is 3.4(3)%.

Projections of global |V_{ub}| fit at Belle II with 1ab⁻¹ and 5ab⁻¹ by SIMBA collaboration. Theoretical uncertainties of the same size are not included.

- Major upgrade at KEK for the next generation B-factory
- Large dataset and improved detector

CKM mechanism will be tested at 1% level

- sin(2φ₁): precision better than 1% on φ₁ using ccs modes
- $sin(2\varphi_2)$: new inputs for the isospin analysis. Expected sensitivity $\delta \varphi_2 = 3^\circ$ at 50 ab⁻¹

Most likely, the most relevant contribution using CKM physics to probe NP offered by Belle II will be a significant improvement in the determination of ϕ_3 and IV_{ub}I:

- $\varphi_{3:}$ from $B \rightarrow DK$ decays $\delta \varphi_3 = 1.6^{\circ}$ at 50 ab⁻¹
- |Vub|: from exclusive (inclusive) semileptonic measurements expected precision of 1.3%(3%)

Δm_d & Δm 0.0 -0.2 0.0 0.2 0.4 0.6 0.8 ρ Belle2 projection @ 50ab⁻¹ $\Delta m_{\rm f} \& \Delta m_{\rm s}$ 0.0 -0.2 0.0 0.2 0.4 0.6

ρ

Current world average

Backup

Detector components

Purpose	Name	Component	Configuration	Readout	θ coverage	Performance
Beam pipe	Beryllium		Cylindrical, inner ra-			
			dius 10 mm, 12 μ m			
			Au (check), 0.6 mm			
			Be, 1 mm paraffin,			
			0.4 mm Be			
Tracking	PXD	Silicon Pixel	Sensor size: $15 \times (L1)$	10M	$[17^{\circ}; 150^{\circ}]$	
		(DEPFET)	136, L2 170) mm ² ,			
			Pixel size: 50×(L1a			
			50, L1b 60, L2a 75,			
			L2b 85) µm ² , Two			
			layers at radii: 8, 12			
	SVD	Silicon Strip	mm Rectangular and	245k	$[17^{\circ}; 150^{\circ}]$	
	340	Shicon Surp	trapezoidal, Strip	240K	[11,100.]	
			pitch: 50(p)/160(n)			
			- 75(p)/240(n) μm,			
			Four layers at radii:			
			38, 80, 104, 135 mm			
	CDC	Drift Chamber	small cell, large cell	14k	$[17^{\circ}; 150^{\circ}]$	
Calorimetry	ECL	CsI(Tl)	Barrel: $r = 125 -$	6624 (Barrel),	[12.4°;31.4°],	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{3/E} \oplus$
			162cm, end-cap: $z =$	1152 (FWD),	[32.2°;128.7°],	$1.2\% \sim 1.7\%$
			-102 - +196 cm	960 (BWD)	$[130.7^{\circ}; 155.1^{\circ}]$	
Particle ID	TOP	RICH with quartz ra-	16 segments in ϕ at	8k	$[31^{\circ}; 128^{\circ}]$	
		diator	$\tau \sim 120$ cm, 275			
			cm long, 2cm thick			
			quartz bars with 4×4			
	A TO LOT I	DIGIT - HI	channel MCP PMTs		It to pool	
	ARICH	RICH with aerogel	2×2 cm thick focus-	78k	$[14^{\circ};30^{\circ}]$	
		radiator	ing radiators with			
			different n, HAPD photodetectors			
			FWD			
Muon ID	KLM	barrel:RPCs and	2 layers with scintil-	θ 16k, φ 16k	[40°;129°]	
		scintillator strips	lator strips and 12			
		-	layers with 2 RPCs			
	KLM	end-cap: scintillator	14 layers of (7-	17k	$[25^{\circ};40^{\circ}], [129^{\circ};155^{\circ}]$	
		strips	10)×40 mm ² strips			

Table 2.1: Summary of the detector components.

Prospects

\frown
INFN

Observables	Expected th. accuracy	Expected exp. uncer- tainty	Facility (2025)							
UT angles & sides										
$\phi_1 [^{\circ}] \\ \phi_2 [^{\circ}]$	***	0.4	Belle II							
2 [°]	**	1.0	Belle II							
3 [°]	***	1.0	Belle II/LHCb							
V _{cb} incl.	***	1%	Belle II							
V _{cb} excl.	***	1.5%	Belle II							
V_{ub} incl.	**	3%	Belle II							
V_{ub} excl.	**	2%	Belle II/LHCb							
CPV										
$S(B o \phi K^0)$	***	0.02	Belle II							
$S(B \to \eta' K^0)$	***	0.01	Belle II							
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II							
$A(B \to K^+\pi^-) \ [10^{-2}]$	***	0.20	LHCb/Belle II							
Semi-)leptonic		0.40	Life of Delle II							
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II							
$\mathcal{B}(B \to \mu\nu) [10^{-6}]$	**	7%	Belle II							
$R(B \to D\tau\nu)$ [10]	***	3%	Belle II							
$R(B \to D^* \tau \nu)$ $R(B \to D^* \tau \nu)$	***	2%	Belle II/LHCb		Observables	Belle or LHCb [*]		le II		łСЬ
Radiative & EW Penguins						(2014)	5 ab^{-1}	50 ab^{-1}	2018	50 fb-
$\mathcal{B}(B \to X_s \gamma)$ $A_{CP}(B \to X_{s,d} \gamma) \ [10^{-2}]$		4% 0.005	Belle II Belle II	Charm Rare	$\mathcal{B}(D_s \rightarrow \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II		$\mathcal{B}(D_s \rightarrow \tau \nu)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
$S(B ightarrow ho \gamma)$	••	0.07	Belle II		$\mathcal{B}(D^0 \rightarrow \gamma \gamma) [10^{-6}]$	< 1.5	30%	25%		
$3(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II		$\mathcal{L}(\mathcal{D}) \rightarrow (\mathcal{D}) [\mathcal{D}]$		0070	2070		
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II	Charm CP	$A_{CP}(D^0 \rightarrow K^+K^-)$ [10 ⁻⁴]	$-32 \pm 21 \pm 9$	11	6		
$\begin{array}{l} \mathcal{B}(B \to K\nu\overline{\nu}) \ [10^{-6}] \\ \mathcal{R}(B \to K^*\ell\ell) \end{array}$	***	20% 0.03	Belle II Belle II/LHCb		$\Delta A_{CP}(D^0 \rightarrow K^+K^-) \ [10^{-3}]$				0.5	0.1
$(D \rightarrow H \alpha)$		0.00	Delle H/Lifeo		$A_{\Gamma} [10^{-2}]$	0.22	0.1	0.03	0.02	
									0.02	0.005
					$A_{CP}(D^0 \rightarrow \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
					$A_{CP}(D^0 \rightarrow K_S^0 \pi^0)$ [10 ⁻²]	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03		
					$x(D^0 \to K^0_S \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm {0.07 \atop 0.13 \atop 0.05}$		0.11		
					$y(D^0 \to K_S^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm {0.05 \atop 0.08}$	0.08	0.05		
					$ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$	$0.90 \pm {}^{0.16}_{0.15} \pm {}^{0.08}_{0.06}$	0.10	0.07		
					$\phi(D^0\to K^0_S\pi^+\pi^-)\;[^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$	6	4		
				Tau	$\tau \rightarrow \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
					$\tau \rightarrow e \gamma \ [10^{-9}]$	< 120	< 39			
					$\tau \rightarrow \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0			
					$r \rightarrow \mu\mu\mu$ [10 -]	× 41.0	2 3.0	< 0.0		

INFN

Belle 2 detector

INFN

$sin(2\varphi_1)$ from b $\rightarrow q\overline{q}s: B \rightarrow \phi K^0_s$

Complementary determination of φ_1 through $b \rightarrow qqs$ (q = u, d, s) are dominated by penguin transitions. More sensitive to non SM physics effects.

BaBar [arXiv:1201.5897] and Belle [arXiv:1007.3848] extracted the B_d $\rightarrow \phi K^0$ CP asymmetry parameters from time-dependent analysis of the K+K-K⁰ final state:

	cur	rent v	alue	average
	-ηS	0.74	+0.11 -0.13	
φK0	A	-0.01	±0.14	
				a

Channel	Δt resolution (ps)
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	0.75
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	0.77
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	0.78

Sensitivity estimates for $S_{\varphi K^0}$ and $A_{\varphi K^0}$	
parameters for 1 ab^{-1} and 5 ab^{-1}	

Channel	ε_{reco}	Yield	$\sigma(S)$	$\sigma(A)$
1 ab^{-1} scenario:				
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	456	0.174	0.123
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	153	0.295	0.215
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	109	0.338	0.252
K_S modes combination			0.135	0.098
$K_S + K_L$ modes combined	nation		0.108	0.079
5 ab^{-1} scenario:				
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	2280	0.078	0.055
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	765	0.132	0.096
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	545	0.151	0.113
K_S modes combination		0.060	0.044	
$K_S + K_L$ modes combined	nation		0.048	0.035

Differences with respect $B_d \rightarrow \phi K^0$:

- more complex η' decay channel
- larger branching fraction (x10)

• no competition with LHCb expected due to neutrals in the final state

BaBar [arXiv:0809.1174] and Belle [arXiv:1408.5991] collaborations performed the CP-violation analyses for this channel :

$$S_{\eta' K^0_S} = +0.57 \pm 0.08 \pm 0.02 (ext{BaBar})$$
 $S_{\eta' K^0_S} = +0.68 \pm 0.07 \pm 0.03 (ext{Belle})$

estimated resolution

Channel	yield	$\sigma(S)$	$\sigma(C)$	Channel	yield	σ
	$1 \ ab^{-1}$				$5 \ ab^{-1}$	
$\eta(2\gamma)K^0_S(\pi^\pm)$	969	0.13	0.08	$\eta(2\gamma)K^0_S(\pi^\pm)$	4840	0.0
$\eta(2\gamma)K^0_S(2\pi^0)$	215	0.27	0.17	$\eta(2\gamma)K^0_S(2\pi^0)$	1070	0.12
$\eta(3\pi)K^0_S(\pi^\pm)$	283	0.25	0.16	$\eta(3\pi)K^0_S(\pi^\pm)$	1415	0.11
$ ho(\pi^\pm)K^0_S(\pi^\pm)$	2100	0.06	0.07	$ ho(\pi^\pm)K^0_S(\pi^\pm)$	10500	0.04
$ ho(\pi^\pm)K^0_S(2\pi^0)$	320	0.10	0.17	$ ho(\pi^\pm)K^0_S(2\pi^0)$	1600	0.10
$K_S ext{ modes}$	3891	0.065	0.040	K_S modes	19500	0.028
$K_L { m modes}$	1546	0.17	0.11	$K_L { m modes}$	7730	0.08
$K_S + K_L$ mode	s 5437	0.060	0.038	$K_S + K_L$ mode	s 27200	0.027

 $sin(2\varphi_2)$: B $\rightarrow \rho\rho$

ΰ

- 0.8

0.6

В

→ ρρ

INFN $(\varphi_2 = \alpha)$

BELLE

 $S_{\rho 0\rho 0}$

BELLE II

Branching fractions, fractions of longitudinally polarised events and CP asymmetry parameters entering in the isospin analysis of the $B \rightarrow \rho\rho$ system

$(\varphi_1 = \beta)$ sin(2 φ_1) from b $\rightarrow c\overline{c}s$: projections

Belle II the measurement will be dominated by systematics

Three different scenarios:

- "Belle" : Belle irreducible systematic uncertainties are assumed to not improve in Belle II (not realistic)
- "Belle II" : improvement of 50% is assumed for the systematic due to the vertex positions
- "Leptonic categories" : analysis is performed using only the leptonic categories for flavour tagging

	\frown	 \square	 \frown	_
	Belle	Belle II	leptonic	-
B→J/ψ K⁰s			categories	
$S (50 \text{ ab}^{-1})$				-
stat.	0.0035	0.0035	0.0060	
syst. reducible	0.0012	0.0012	0.0012	
syst. irreducible	0.0082	0.0044	0.0040	
$A (50 \text{ ab}^{-1})$				-
stat.	0.0025	0.0025	0.0043	
syst. reducible	0.0007	0.0007	0.0007	
syst. irreducible	$^{+0.043}_{-0.022}$	$^{+0.042}_{-0.011}$	0.011	_
				-

	Belle	Belle II	leptonic
b→ccs			categories
$S (50 \text{ ab}^{-1})$			
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A (50 \text{ ab}^{-1})$			
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

Expected an experimental precision better than 1% on φ_1

$sin(2\varphi_2)$: $B \rightarrow \pi \pi$

• A scan of the confidence for φ_2 from a χ^2 distribution which is obtained by minimising 2 log(L) is performed. The likelihood L has the form of a multivariate normal distribution:

$$\chi^2 = -2 \log \left[rac{\exp \left(rac{1}{2} \left(\mathbf{x}_{ ext{data}} - \mathbf{x}_{ ext{theo}}
ight)^T \varSigma^{-1} \left(\mathbf{x}_{ ext{data}} - \mathbf{x}_{ ext{theo}}
ight)
ight)}{\sqrt{(2\pi)^n \det \varSigma}}
ight].$$

where x_{data} and x_{theo} are vectors containing respectively the measured values and the theoretical prediction of parameters B_+ , B_{00} , B_{+0} , C_+ , S_+ , C_{00} and S_{00}

The covariance matrix Σ contains the uncertainties in the diagonal and the correlations between the measured parameters in the non-diagonal part.

 $(\varphi_2 = \alpha)$

φ_3 : LHCb and Belle 2 projections

The LHCb value is based on an extrapolation of the 2015 Run-1 results in LHCb-PAPER- 2014-041 and also analysed by CKMFitter. The results are based on a combination of measurements from $B^+ \rightarrow Dh^+$ and $B^0 \rightarrow DK^{*0}$ decays, where h⁺ corresponds to either K⁺ or π^+ and the D meson decays into:

- D→KK,D→ππ,D→Kπ
- D→Kππ
- D→KSππ

$sin(2\varphi_1)$ sensitivity

Table 95: Expected uncertainties on the S and A parameters for the channels sensitive to $\sin(2\phi_1)$ discussed in this chapter for an integrated luminosity of 5 and 50 ab⁻¹. The present (2017) World Average [601] errors are also reported.

	WA (2017)	5 a	b^{-1}	50 ab^{-1}		
Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	
$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090	
ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011	
$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008	
ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020	
$K^0_S\pi^0\gamma$	0.20	0.12	0.10	0.07	0.031	0.021	
$K^0_S\pi^0$	0.17	0.10	0.09	0.06	0.028	0.018	

 $(\varphi_1 = \beta)$