

Search for the rare decay ${\it B}^+ o \ell^+ u_\ell \gamma$ at Belle and Belle II

XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics

Moritz Gelb for the Belle II Collaboration | 11.01.2018

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (ETP)

Introduction

- · Measurement of missing energy modes possible
- New tagging algorithm for Belle II developed
- Opposite B meson can now be reconstructed with higher efficiency compared to the Belle approach
- New method applied to (converted) Belle MC/data
 and later Belle II
- Update of the Belle hadronically tagged ${\rm B}^+ \to \ell^+ \nu_\ell \gamma$ analysis a

^aPhys. Rev. D 91, 112009 (2015)

The Decay ${\sf B}^+ o \ell^+ u_\ell \gamma$

The decay $B^+ \rightarrow \ell^+ \nu_{\ell} \gamma$ allows to probe the first inverse moment λ_B of the Light-Cone Distribution Amplitude (LCDA) of the B meson.

Important input for QCD factorization necessary for theory predictions of non-leptonic B meson decays

Moritz J. Gelb – $B^+ \rightarrow \ell^+ \nu_\ell \gamma$

 \Rightarrow

SuperKEKB Accelerator

- Asymmetric e^+e^- collider at $\Upsilon(4S)$ resonance $(E_{\rm CMS} = 10.58 \,{\rm GeV})$
- Nanobeam scheme

See also talk on Wednesday: "Belle 2 Prospects for CP-Violation Measurements" by Chiara La Licata

Moritz J. Gelb – $B^+
ightarrow \ell^+
u_\ell \gamma$

Belle II Detector

18110

Time of Propagation counter DIRC with 20 mm quartz bars MCP-PMT readout

.......

Electromagnetic Calorimeter 8000 Csl Crystals, 16 X₀ PMT/APD readout

Pixel Vertex Detector 2 layer pixel detector (8MP) DEPFET technology

Silicon Vertex Detector 4 layer double sided strips 20 – 50 ns shaping time

Central Drift Chamber proportional wire drift chamber 15000 sense wires in 58 layers

Aerogel RICH Proximity focusing RICH with silica aerogel

Analysis Procedure

- Identification of signal lepton and photon
- Isolation of the remaining particles
- Application of the Full Event Interpretation (FEI) for *B*-tagging
- Recombination of the initial $\Upsilon(4S)$

The Tagging Algorithm: Full Event Interpretation

- Hierarchical reconstruction of B_{tag} with a network of classifiers
- Successor of the Belle Full Reconstruction (FR)
- Training and application
- Hadronic and semi-leptonic tag modes
- Generic FEI:
 - 1) FEI trained and applied on full event
 - 2) Signal selection
- Signal-specific FEI (new):
 - 1) Signal selection
 - 2) FEI trained and applied on rest-of-event \rightarrow trained on specific event topology
- Each $B_{\rm tag}$ candidate has an assigned probability $P_{\rm FEI}$

Tagging ϵ on MC				
Tag	FR ¹	gen. FEI Belle	gen. FEI Belle II	
Hadronic B ⁺	0.28%	0.76%	0.66%	
SL B ⁺	0.67%	1.80%	1.45%	
Hadronic B ⁰	0.18%	0.46%	0.38%	
SL B ⁰	0.63%	2.04%	1.94%	

¹Belle Full Reconstruction algorithm.

Ref. T. Keck: https://ekp-invenio.physik.uni-karlsruhe.de/record/48602/files/EKP-2015-00001.pdf

Moritz J. Gelb – $B^+
ightarrow \ell^+
u_\ell \gamma$

Calibration of the Tagging Algorithm

Why calibration?

Correct for difference in tagging efficiency on data and MC caused by:

- Hadronic branching ratios
- Dynamics of hadronic decays
- Detector simulation
- ...

Procedure¹

- 1) Reconstruct B_{sig} in well-known calibration channel
- 2) Apply tagging algorithm
- 3) Extract the number of events on MC and data via a fit on $M_{\rm miss}^2$
- 4) Calculate the correction factor for calibration channel:

$$\epsilon = \frac{N_{\text{Data}}}{N_{\text{MC}}}$$

The correction factor ϵ incorporates all corrections on the tag-side B_{tag} !

¹More details can be found in the MsC thesis of Judith Schwab:

https://ekp-invenio.physik.uni-karlsruhe.de/record/48931/files/EKP-2017-00058.pdf

Moritz J. Gelb – $B^+ \rightarrow \ell^+ \nu_\ell \gamma$

Missing Mass – $M_{\rm miss}^2$

$$egin{aligned} &\mathcal{M}^2_{\mathrm{miss}} = (\mathcal{p}_{\mathsf{B}_{\mathsf{sig}}} - \mathcal{p}_\ell - \mathcal{p}_\gamma)^2 \ &= \left(\left(egin{matrix} rac{E_{\mathrm{CMS}}}{2c} \ -ec{\mathcal{p}}_{\mathsf{B}_{\mathsf{tag}}}
ight) - \mathcal{p}_\ell - \mathcal{p}_\gamma
ight)^2 \end{aligned}$$

- At B-Factories the initial state of the $\Upsilon(4S)$ is well known.
- Momentum resolution is dominated by the photon contribution.
- Correctly reconstructed events with one neutrino peak at $M_{\rm miss}^2 = 0$.

Outlook

 μ^+ final state

e^+ final state

Exp. Signal Yield for $\mathcal{B}(B^+ \rightarrow \ell^+ \nu_\ell \gamma) = 5.0 \times 10^{-6}$

	Electron Channel	Muon Channel	Combined	
	${\rm B^+} \to {\it e^+} \nu_{\it e} \gamma$	$B^+ o \mu^+ u_\mu \gamma$	${\rm B^+} \to \ell^+ \nu_\ell \gamma$	
Improved Analysis	17.6	18.8	36.4	
Prev. Belle Analysis	8.0	8.7	16.5	

Summary

- New analysis tools were developed for Belle II
- The new tagging algorithm allows for more than doubled efficiency
- · Tools allow already to improve Belle analysis

Thank you!

Appendix – Calibration Results

Figure: Calibration factors of the Specific FEI for the calibration channels, on data.

Average: $\epsilon = 0.825 \pm 0.014 \pm 0.049$

Moritz J. Gelb – $B^+
ightarrow \ell^+ \nu_\ell \gamma$

Appendix – Calibration Results

Figure: Calibration factors of the Specific FEI for the calibration channels split over the tag channels, on data.

Average: $\epsilon = 0.825 \pm 0.014 \pm 0.049$

Moritz J. Gelb – $B^+ \rightarrow \ell^+ \nu_\ell \gamma$

Outlook for Belle II

Expected Statistical Error for $\mathcal{B}(B^+ o \ell^+ u_\ell \gamma) = 5.0 imes 10^{-6}$						
	Belle	Belle II	Belle II			
	Improv. Analysis	$5ab^{-1}$	50 <i>ab</i> ⁻¹			
	+1.2	+0.46	+0.14			
	-1.32	-0.50	-0.16			

Systematic errors are still being evaluated.