

CP Violation sensitivity at the Belle II Experiment

Tao Luo (Fudan University) On Behalf of the Belle II Collaboration September 1 - 5, 2017 Particles and Nuclei International Conference 2017, IHEP, China

Introduction on the Unitarity Triangle

Super KEKB accelerator and Belle II detector

CP Violation sensitivity Prospects at Belle-II

Outlook and summary

The Unitarity Triangle

- The weak interactions of quarks are described by the CKM unitary matrix (V_{CKM}).

 \succ V_{CKM} is expressed by three rotation angles and one phase (phase $\neq 0 \leftrightarrow CP$ violation in the quark sector).

- Unitarity relations are represented by six triangles in the complex plane.
- The B⁰ Unitarity Triangle (UT) is shown here
 - \checkmark Sides ~ Branching fractions and $B\overline{B}$ mixing
 - Angles ~ amounts of CPV

Belle II Measurement of time dependent の 体の上学 CP violation

- $\rightarrow \phi_1$ is accessible through oscillations
- Resolution on Δt will be dominated by the resolution of the the tagging B vertex

CPV asymmetry in the time-dependent rates for initial B meson decays to a CP eigenstate, f_{CP}

$$a_{f_{cp}}(\Delta t) \equiv \frac{\Gamma_{\bar{B} \to f_{cp}}(\Delta t) - \Gamma_{B \to f_{cp}}(\Delta t)}{\Gamma_{\bar{B} \to f_{cp}}(\Delta t) + \Gamma_{B \to f_{cp}}(\Delta t)} = S \sin(\Delta M \Delta t) - C \cos(\Delta M \Delta t)$$
$$S = -\xi_f \sin 2\phi_1 \text{ and } C \approx 0$$

KL and muon detector Resistive Plate Counter (barrel outer layers)

Particle Identification

Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Scintillator + WLSF + MPPC (end-caps , inner 2 barrel lavers)

Peak luminosity of SuperKEKB reach 40 times of KEKB!

- \succ Reduction in the beam size by 1/20 at the IP.
- Doubling the beam currents.

Targets:

Peak luminosity: $8 \times 10^{35} cm^{-2} s^{-1}$ Integrated luminosity: $50ab^{-1} by 2024$ Many upgrades needed in order to increase the performance and cope with much more severe background conditions

Main improvement in performance in two areas: Tracking and vertex determination; Particle ID

EM Calorimeter

CsI(TI), waveform sampling electronic:

electrons (7 GeV)

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

> Central Drift Chamber Smaller cell size, long lever arm

Vertex Detector

q: flavor tag; r: flavor dilution fraction; they are the outputs of a multivariate

Combined charged PID performance of Belle II

- Inclusive $c\bar{c}$ MC samples.
- Minimal track quality restrictions are applied
- $\pounds \mathcal{L}(\alpha:\beta) > 0.5$
- Black markers: selection eff. w/o
- background; red markers: fake rate
- Very good PID performance, especially in the low p region

 ϕ_1 from $b \rightarrow c \overline{c} s$

Signal tree process

Penguin pollution

- $P \to J/\psi K_s^0$ is the "golden mode" for extracting ϕ_1
 - The expected theoretical uncertainty is small
 - Experimental signature is clean ($f = J/\psi K_s^0$ is a CP eigenstate)
 - Theoretical estimates of penguin pollution have been significantly improved in Phys. Rev. Lett., 115, 061802 (2015) Belle2 expected uncertainties @ 50 ab⁻¹

Current status from Belle

(Precision better than 1%)

Errors (10^{-3})	-	Value (10^0)	stat.	syst.	stat.	syst. reducible	syst.(case 1)	syst.(case 2)
${ m J}/\psi K^0$	\mathbf{S}	+0.67	29	13	3.5	1.2	8.2	4.4
•	$\mathcal{A}\equiv -C$	-0.015	21	$\left \begin{array}{c}+45\\-23\end{array}\right $	2.5	0.7	$^{+43}_{-22}$	+42 -11
$c\bar{c}s$	\mathbf{S}	+0.667	23	12	2.7	2.6	7.0	3.6
	$\mathcal{A}\equiv -C$	-0.006	16	12	1.9	1.4	10.6	8.7

Case1: irreducible syst. same as Belle; Case2: irreducible syst. (vertexing)reduced by a factor 2 9 due to the new Pixel Vertex detector and improved tracking and alignment algorithms

 $\phi_1 \text{ from } b \to q \overline{q} s: B^0 \to \phi K^0_s$

10

Penguin diagram

t, c, u \bar{B}^0 K_S

Best achievable Λt resolution of reference modes

Channel	Δt resolution (ps)
$\phi(K^+K^-)K^0_S(\pi^+\pi^-)$	0.75
$\phi(K^+K^-)K^0_S(\pi^0\pi^0)$	0.77
$\phi(\pi^+\pi^-\pi^0)K^0_S(\pi^+\pi^-)$	0.78

Three-gaussian fit on the Δt resolution: $\sigma(\Delta t) \sim 0.75$

Expected sensitivity @ 50 ab⁻¹

80000

 $\phi_1 \text{ from } b \to q \overline{q} s: B^0 \to \eta' K^0_s$

Best achievable Δt resolution of reference modes

Channel	True	SxF	All
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{(\pm)}$	$1.22 \ ps$	$2.87 \ ps$	$1.45 \ ps$
$\eta'(\eta_{3\pi}\pi^{\pm})K_S^{(\pm)}$	$1.17 \ ps$	$2.36 \ ps$	$1.50 \ ps$

Crucial aspect is π^0 , η^0 reconstruction Non negligible fraction of mis-reconstructed signal (SxF)

Belle: $S_{\eta' K_S^0} = +0.68 \pm 0.07 \pm 0.03$

Expected sensitivity @ 50 ab⁻¹

Channel	$\sigma(S)$	$\sigma(C)$		
$\eta'(\eta_{\gamma\gamma}\pi^{\pm})K_S^{\pm}$	0.019	0.013		
$\underline{\eta'(\eta_{3\pi}\pi^{\pm})K_S^{\pm}}$	0.035	0.025		
K_S^0 modes	0.009	0.007		
$K_L^0 { m modes}$	0.025	0.016		
$K_S^0 + K_L^0$ modes	0.0085	0.0063		
Syst. (10^{-2})	1.8 (1.3)	-		
Syst. Case 1 (Case 2)				

Systematic uncertainty will be dominated

Time dependent CP asymmetries for the final states J/ ψ K_s (red dots) and η 'K_s (blue triangles), using $S_{J/\psi K_s}^{0}$ = 0.70 and $S_{\eta' K^0}$ = 0.55 as inputs to the Monte Carlo

With the full integrated luminosity of 50 ab⁻¹, these two modes would be unambiguously distinguishable, signifying the existence of New Physics

Outlook of ϕ_1 determination

Expected yields and uncertainties on the S and A parameters for the following channels with 50 ab⁻¹ data, In the 4th and the last column we also give the present WA errors on each of the observables

Channel	Event yield	$\sigma(S)$	$\sigma(S)_{2017}$	$\sigma(A)$	$\sigma(A)_{2017}$
${ m J}/\psi K^0$	1.4×10^{6}	0.0052	0.022	0.0050	0.021
ϕK^0	55900	0.015	0.12	0.011	0.14
$\eta' K^0$	272000	0.015	0.06	0.013	0.04
ωK^0_S	16700	0.025	0.21	0.019	0.14
$K^0_S\pi^0\gamma$	14000	0.032	0.20	0.022	0.12
$K^0_S\pi^0$	56990	0.028	0.17	0.019	0.10

Measurement of ϕ_2

• access ϕ_2 via time-dependent CP asymmetry in:

$$B^{0} \to \pi \pi$$
$$B^{0} \to \rho \rho$$
$$B^{0} \to \rho \pi$$

penguin contribution has to be controlled in analysis

$$S\,=\,\sin\left(2\phi_2^{eff}
ight)$$
 with $\phi_2^{eff}\,=\,\phi_2+\Delta\phi_2$

 $C \neq 0 \Rightarrow$ direct CP violation from interference of tree and penguin Existence of Nonnegligible strong phase \rightarrow Can not extract ϕ_2 directly

 ϕ_2 from B $\rightarrow \pi\pi$

The B2TIP report: https://confluence.desy.de/display/BI/B2TiP+WebHome

	Isospin a	analysis input in $B \rightarrow \pi \pi$	
	Value	Belle $@ 0.8 ab^{-1}$	Belle2 $@$ 50 ab ⁻¹
$\mathcal{B}_{\pi^+\pi^-}$ [10 ⁻⁶]	5.04	$\pm 0.21 \pm 0.18$ [2]	$\pm 0.03 \pm 0.08$
$\hat{\mathcal{B}}_{\pi^0}^{\circ} _{\pi^0}^{\circ} [10^{-6}]$	1.31	$\pm 0.19 \pm 0.18$ [1]	$\pm 0.04 \pm 0.04$
$\mathcal{B}_{\pi^+\pi^0}^{\pi^-\pi^-}$ [10 ⁻⁶]	5.86	$\pm 0.26 \pm 0.38$ [2]	$\pm 0.03 \pm 0.09$
$C_{\pi^{+}\pi^{-}}$	-0.33	$\pm 0.06 \pm 0.03$ [3]	$\pm 0.01 \pm 0.03$
$S_{-+}^{n} -$	-0.64	$\pm 0.08 \pm 0.03$ [3]	$\pm 0.01 \pm 0.01$
$C_{\pi^{0}\pi^{0}}^{\pi^{0}\pi^{0}}$	-0.14	$\pm 0.36 \pm 0.12$ [1]	$\pm 0.03 \pm 0.01$
$S_{\pi^{0}\pi^{0}}$			$\pm 0.29 \pm 0.03$

[1]: arXiv:1705.02083
[2]: PRD 87(3) 031103
[2]: PRD 88(9) 092003

More details can be found about the estimating method can be found in arXiv:1608.06224

 ϕ_2 from B $\rightarrow \rho\rho$

15

The B2TIP report: https://confluence.desy.de/display/BI/B2TiP+WebHome

	Value	Belle $@ 0.8 ab^{-1}$	Belle2 @ 50 ab^{-1}		
$f_{L_{1}\rho^{+}\rho^{-}}$	0.988	$\pm 0.012 \pm 0.023$ [1]	$\pm 0.002 \pm 0.003$		
$\tilde{f}_{L,\rho}^{\mu,\rho,\rho}$	0.21	$\pm 0.20 \pm 0.15$ [2]	$\pm 0.03 \pm 0.02$		
$\mathcal{B}_{\rho^+\rho^-}^{\mu^-\rho^-}$ [10 ⁻⁶]	28.3	$\pm 1.5 \pm 1.5$ [1]	$\pm 0.19 \pm 0.4$		
\mathcal{B}_{000}^{-6} [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [2]	$\pm 0.04 \pm 0.02$		
$C_{0^{+}0^{-}}$	0.00	$\pm 0.10 \pm 0.06$ [1]	$\pm 0.01 \pm 0.01$		
$S^{\rho}_{\rho}+^{\rho}_{\rho}-$	-0.13	$\pm 0.15 \pm 0.05$ [1]	$\pm 0.02 \pm 0.01$		
	Value	Belle $@ 0.08 ab^{-1}$	Belle2 @ 50 ab^{-1}		
$f_{L_{1}\rho^{+}\rho^{0}}$	0.95	$\pm 0.11 \pm 0.02$ [3]	$\pm 0.004 \pm 0.003$		
$\mathcal{B}_{\rho^+\rho^0}^{\ \ \mu^-6}$	31.7	$\pm 7.1 \pm 5.3$ [3]	$\pm 0.3 \pm 0.5$		
	Value	$\operatorname{BaBar} @ 0.5 ab^{-1}$	Belle2 @ 50 ab^{-1}		
$C_{\rho^0\rho^0}$	0.2	$\pm 0.8 \pm 0.3$ [4]	$\pm 0.08 \pm 0.01$		
$S_{\rho 0}^{\prime } \rho_{ ho 0}^{\prime }$	0.3	$\pm 0.7 \pm 0.2$ [4]	$\pm 0.07 \pm 0.01$		
[1]: PRD 93(3) 032010, [2]: Add PRD 89 no.11 119903,					
[3]: PRL 91 221801	, [4]: PRD	78 071104 f_L : fractions of	of longitudinally polarized eve		

Isospin analysis input in $B \rightarrow \rho \rho$

Outlook

- Two key scenarios (SM-like central values and World average (ca. 2016) central values) are considered corresponding to 50 ab⁻¹ data.
- All of the measurements on Belle II will greatly benefit from the accelator and detector improvements

Summary

- Belle has been a successful B factory, especially for CPV.
- Major upgrades of KEKB and Belle.
- CKM mechanism will be tested at 1% level on Belle II.
- Some flavor variables still to be measured precisely → therefore a lot of room for discoveries at Belle II!

Expected sensitivity on Belle II @ 50 ab⁻¹

Channel	$\sigma(S)$	$\sigma(A)$
$\mathrm{J}/\psi K^0$	0.0052	0.0050
ϕK^0	0.015	0.011
$\eta' K^0$	0.015	0.013
ωK^0_S	0.025	0.019
$K^0_S\pi^0\gamma$	0.032	0.022
$K^0_S\pi^0$	0.028	0.019
$\pi^+\pi^-$	0.014	0.032
$\pi^0\pi^0$	0.032	0.29
$ ho^+ ho^-$	0.022	0.014
$ ho^0 ho^0$	0.071	0.081

Backup slides

time dependent indirect CP violation from interference of decay **without** mixing and decay **with** mixing

