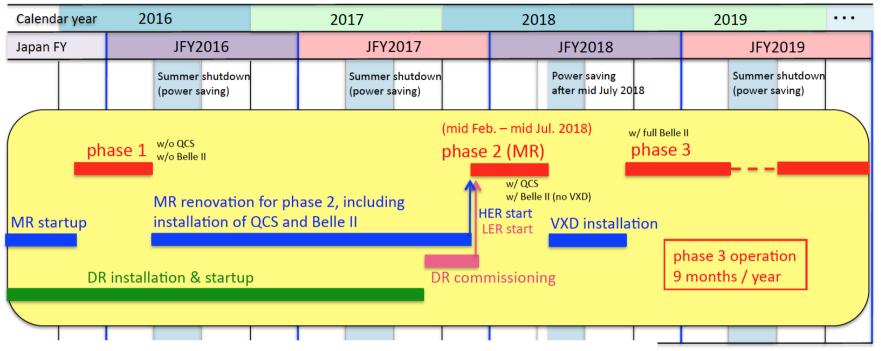
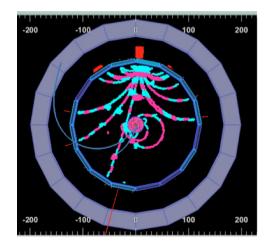

Exotic and conventional bottomonium physics prospects at

KEKB short term plans: startup schedule

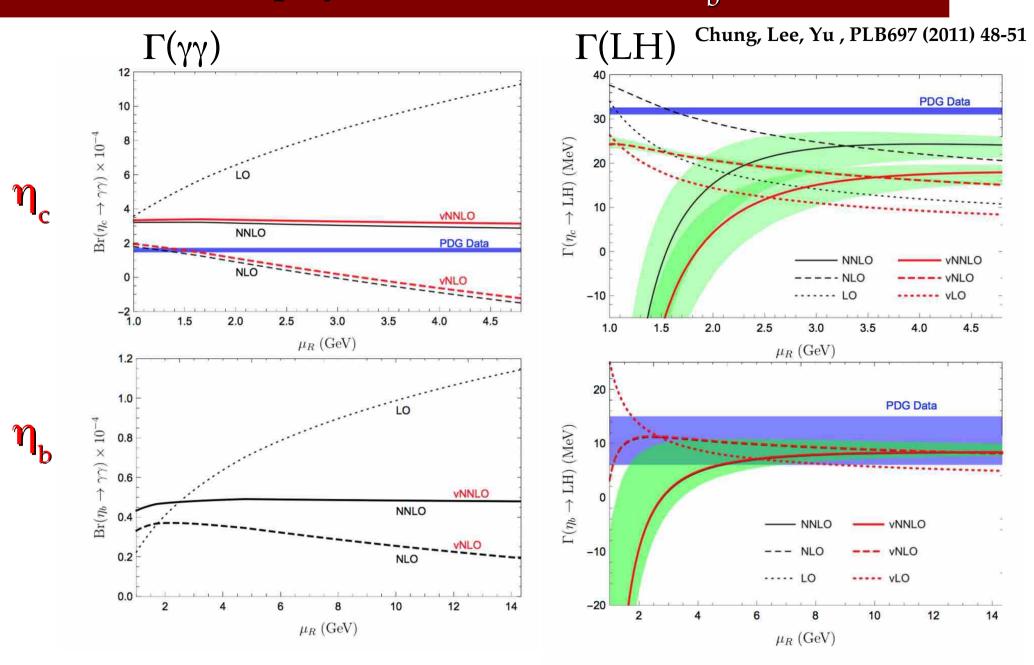


- Summer 2017: global cosmic ray run
- September 2017: ARICH and forward ECL
- October 2017: start Beast Phase II VXD commissioning
- Nov 2017 Summer 2018: Phase 2 commissioning, with two main goals:
 - ✓ tune SuperKEKB with nano-beams eventually reach KEKB design luminosity
 - \checkmark ensure background levels are compatible with vertex detector operation
 - ✓ then, if compatible with the above, also do some physics without vertex detectors
- Summer 2018: install vertex detectors
- End 2018: full detector operation start of Physics run

11/4: Belle-II roll in



KEKB short term plans: startup schedule

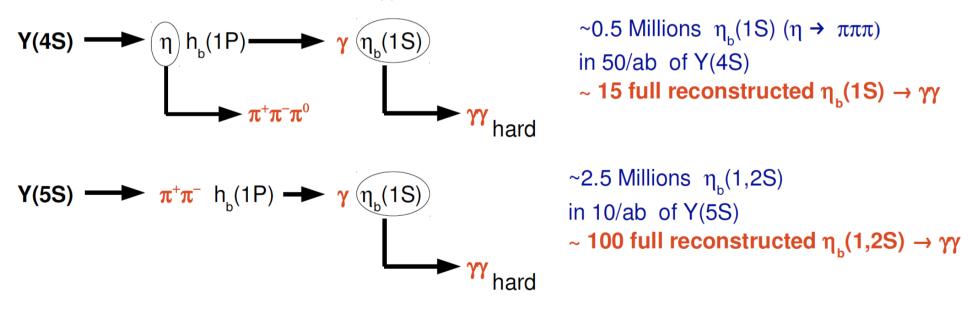


- Summer 2017: global cosmic ray run
- September 2017: ARICH and forward ECL
- October 2017: start Beast Phase II VXD commissioning
- Nov 2017 Summer 2018: Phase 2 commissioning, with two main goals:
 - ✓ tune SuperKEKB with nano-beams eventually reach KEKB design luminosity
 - \checkmark ensure background levels are compatible with vertex detector operation
 - ✓ then, if compatible with the above, also do some physics without vertex detectors
- Summer 2018: install vertex detectors
- End 2018: full detector operation start of Physics run

6/2017: cosmics in B field

Bottomonium physics from Y(4,5S): $\eta_{\rm b} \rightarrow \gamma \gamma$

PANIC 2017 Beijing


Bottomonium physics from Y(4,5S): $\eta_{\rm b} \rightarrow \gamma \gamma$

Chung, Lee, Yu (2011) $\Gamma[\eta b(1S) \rightarrow \gamma \gamma] = 0.512 \pm 0.095 \text{ keV},$ $\Gamma[\eta b(2S) \rightarrow \gamma \gamma] = 0.235 \pm 0.043 \text{ keV}$ $B[\eta b(2S) \rightarrow \gamma$ $C[\eta b(2S) \rightarrow \gamma$

B[ηb(1S)→ $\gamma\gamma$] ~ 5 x 10⁻⁵ B[ηb(2S)→ $\gamma\gamma$] > 1 x 10⁻⁵

All neutral final state Trigger on hard $\gamma\gamma$ pair not possible due to $e^+e^- \rightarrow \gamma\gamma$ QED background

Trigger on soft dipion pair + hard $\gamma\gamma$ is the solution

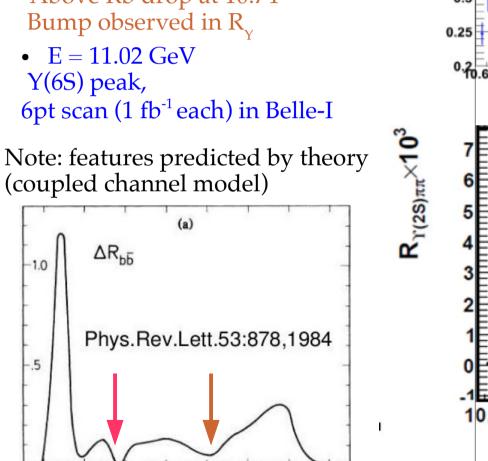
hard

Motivations for non-Y(4S) running

				$B^{(*)}\bar{B}^{*}$	11.00 - 11.07
Energy	Outcome	Lumi (fb-1)	Comments	$B_s^{(*)}ar{B}_s$	$s^{**} s = 11.13 - 11.26$
Υ(1S) On	N/A	60+	-No interest identified	$\Lambda_b ar{\Lambda}_b$	$_{b}$ 11.24
			-Low energy	$B^{**}\bar{B}^{*}$	** 11.44 - 11.49
Υ(2S) On	New physics searches	20+	-Requires special trigger	$B_{s}^{**}\bar{B}_{s}^{*}$	
Υ(1D) Scan	Particle discovery	10-20	-Already accessible in B Factories?	$\Lambda_b \Lambda_b^*$	
				$\Sigma_b^{(*)} \bar{\Sigma}_b$	$b^{(*)}_b = 11.62 - 11.67$
Ƴ(3S) On	Many -onia topics	200+	-Known resonance	$\Lambda_b^{**} \bar{\Lambda}_b^*$	$_{b}^{**}$ 11.82 – 11.84
			-Luminosity requirement: Phase 3		
Ύ(3S) Scan	Precision QED	~10	-Understanding of beam conditions nee	ded	
Ύ(2D) Scan	Particle discovery	10-20	-Unknown mass		
>Ƴ(4S) On	Particle discovery?	10+?	-Energy to be determined		
Ƴ(6S) On	Particle discovery?	30+?	-Upper limit of machine energy		
Single γ	New physics?	30+	-Special triggers required		

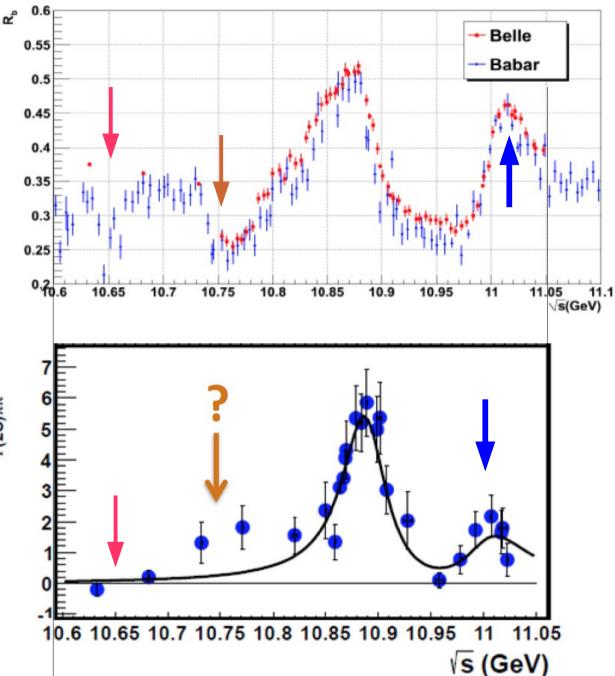
		Y(6S	5)	Yt)?	Y(2[D)	Y(1D)			
Experiment	Scans/Off.	Res.	Υ(5S)	$\Upsilon(4)$	(4S)	Υ(3S)	Υ(2	2S)	$\Upsilon($	1S)
			10876	$3 { m MeV}$	10580	MeV	10355	5 MeV	10023	MeV	9460	MeV
	fb^{-1}		fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}
CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54		R_b s	scan	433	471	30	122	14	99	-	_
Belle	100		121	36	711	772	3	12	25	158	6	102

6


Threshold, GeV/c^2

Particles

Scenarios for Phase-II

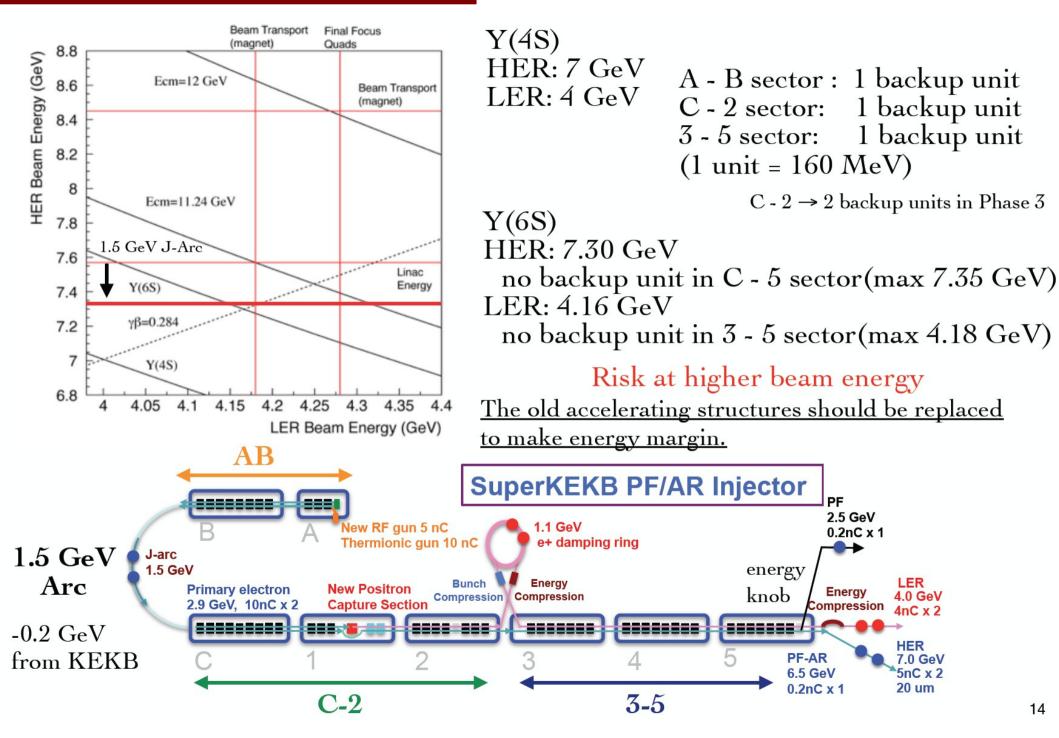

<u>Where to run for Ldt ~ 10 fb⁻¹?</u> • E = 10.65 GeV

- Dip in Rb , just on B*B* threshold
- $\tilde{E} = 10.75 \text{ GeV}$ On the first $Z_{b}\pi$ threshold Above Rb drop at 10.74 Bump observed in R_{v}

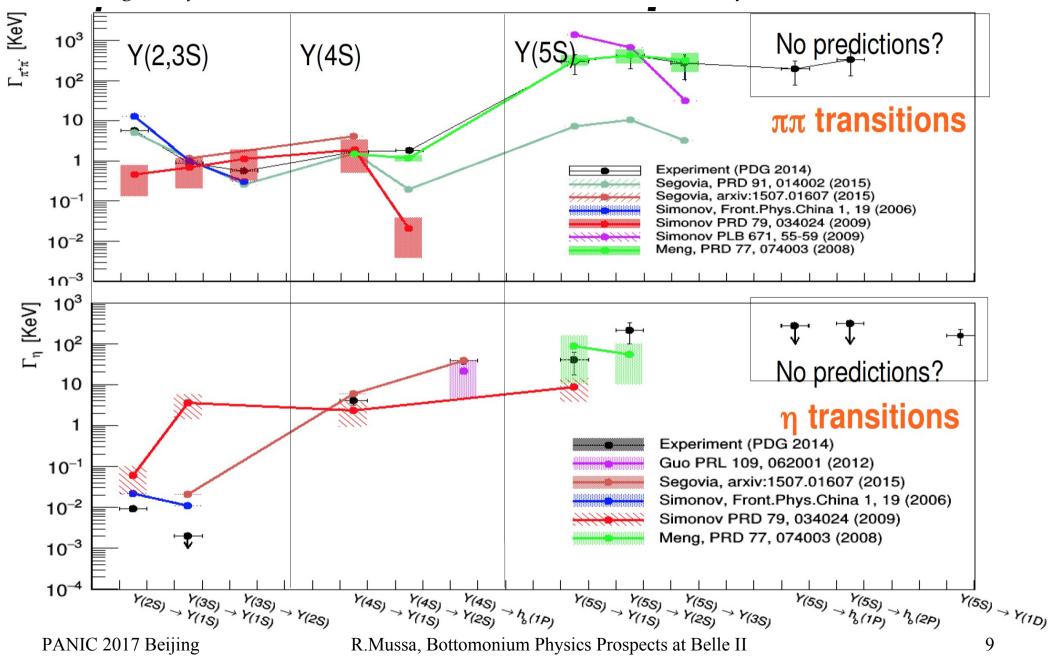
√s/GeV

10.8

PANIC 2017 Beijing

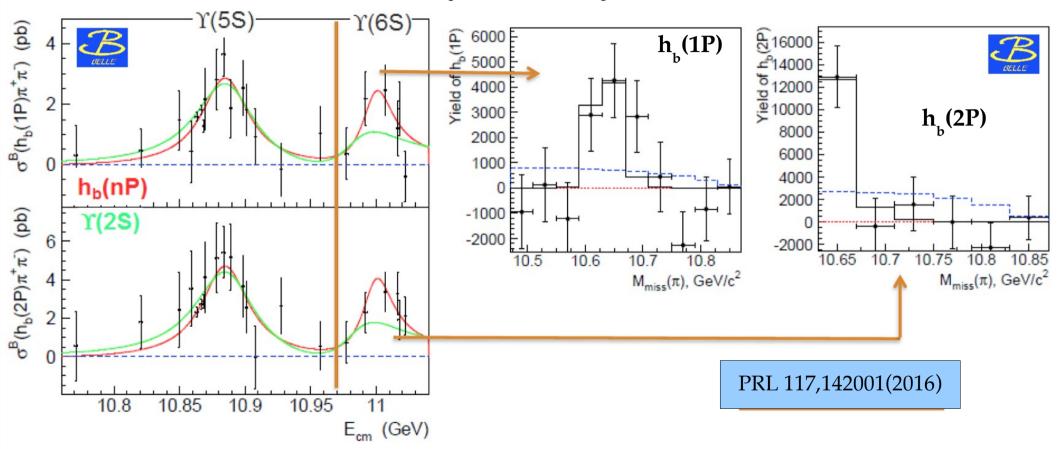

10.7

10.55


10,6

R.Mussa, Bottomonium Physics Prospects at Belle II

Super KEKB limitations


The puzzle of eta / dipion transitions in bottomonium

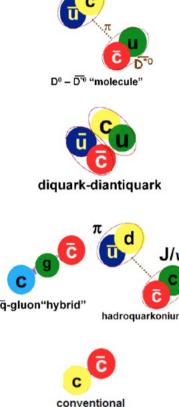
Still lacking a unified theoretical model to describe the observed evolution of the cross section

Belle results on $e^+e^- \rightarrow h_{h}(1,2P) \pi\pi$

The analysis of the 6 points (1 fb⁻¹ each) in the proximity of the Y(6S) show a clear evidence of dipion transitions to both the h_{b} states. The small statistics does not allow to quantify the fractions decaying via $Z_{b}(10610)$ and $Z_{b}(10650)$.

Belle II is planning to take more data at Y(6S) during the first or second year of data taking

Belle II and the new forms of matter


Meson Molecules (Guo et al, ArXiV 1705.00141) weakly bound states of two mesons

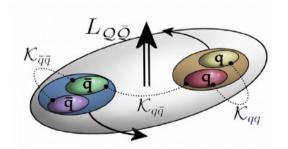
Tetraquarks (Polosa et al, PRD89, 114010 (2014)) Diquark-antidiquark states bound by the color force

Hybrids (Barnes et al, PRD 52,5242 (1995)) colored $Q\overline{Q}$ states with a bound excited gluon

Hadroquarkonium (Dubinskij et al, PLB 671, 82 (2009)) $Q\overline{Q}$ bound state surrounded by a cloud of light quarks


Standard quarkonia (Swanson, PRD 91, 034009 (2015))

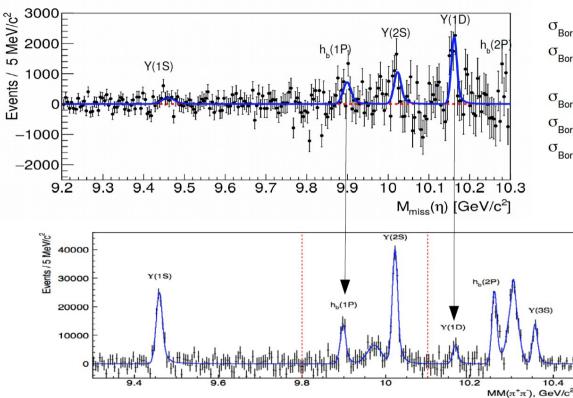
Molecules from Y(6S)


The molecular model of the Z_{b} states predicts neutral partners (W_{b}) with J=0,1,2 which are expected on the same energy range, and should be reachable from Y(5,6S) via radiative transitions.

Further hadronic transitions to W_{b} states are expected above W_{b} threshold (11.3) unreachable at present.

 $\Upsilon(5S)$

2		charmonium	bottomonium-like			
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]	
X ₀	0++	_	3756		10562.2	
X'_0 X_1	0++	_	4024	_	10652.2	
X_1	1^{++}	X(3872)	3890	_	10607.2	
Ζ	1+-	$Z_{c}^{+}(3900)$	3890	$Z_{h}^{+,0}(10610)$	10607.2	
Z'	1+-	$Z_{c}^{+}(4020)$	4024	$Z_{h}^{+}(10650)$	10652.2	
X_2	2++		4024		10652.2	
Y ₁	1	Y(4008)	4024	$Y_b(10891)$	10891.1	
Y_2	1	Y(4260)	4263	$Y_b(10987)$	10987.5	
Y_3	1	Y(4290) (or $Y(4220)$)	4292	_	10981.1	
Y_4	1	Y(4630)	4607	_	11135.3	
Y_5	1	—	6472	_	13036.8	


The tetraquark model (Maiani et al., Ali et al.) predicts a full spectrum of states in both bottomonium and charmonium region.

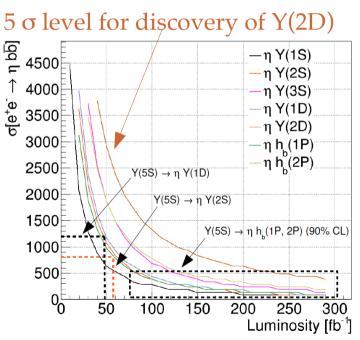
Missing pieces of spectrum below threshold

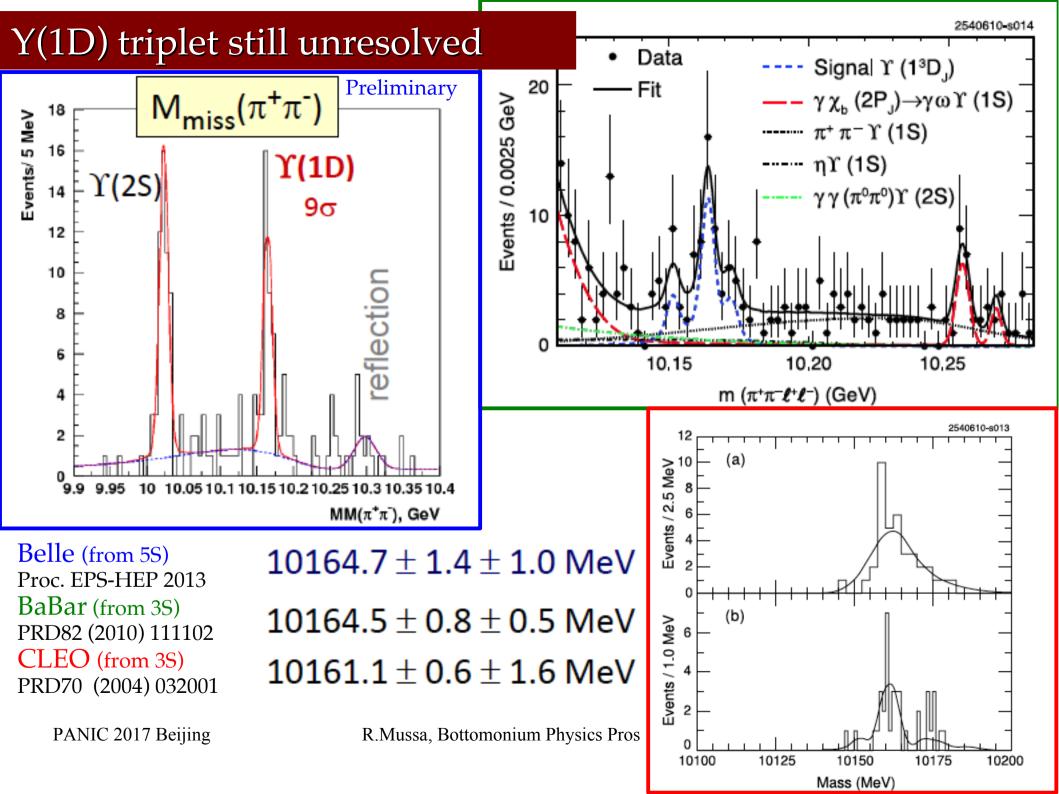
Below threshold: GeV Threshold * 3S: $\eta_{\rm b}$ (3S) not yet observed by anyone, 11.6 maybe reachable from $h_{h}(3P)$? 11.4 * 3P: $\chi_{h}(3P)$ discovered at LHC, not yet 11.2resolved, can we see them from 4S? 6S $h_{L}(3P)$: too high to be reached from 5S 11.0 via Z_{μ} maybe from 6S? How? 5S 10.8 * 1D states : triplet states BEST STUDIED 10.6 from 3S, singlet (2⁻⁺) *maybe* reachable from $h_{h}(2P)$. We plan to scan the 1⁻⁻ region. 10.4 1**G** 1F2D2P * 2D, 1F, 1G: totally unknown 10.2We propose to search for the lowest member of the 2D triplet with a scan. 10.0 2S1P The others *may* be reached from 6S. 9.8 The **1F** triplet **2,3,4**⁺⁺ is very close in mass Spectrum $(b\bar{b})$ States 9.6 to Y3S, but may be reached from the 2D 1S triplet via E1 radiative transitions. 9.4 3 24 5

From Y(5S,6S): Y(1,2D) searches in Belle II

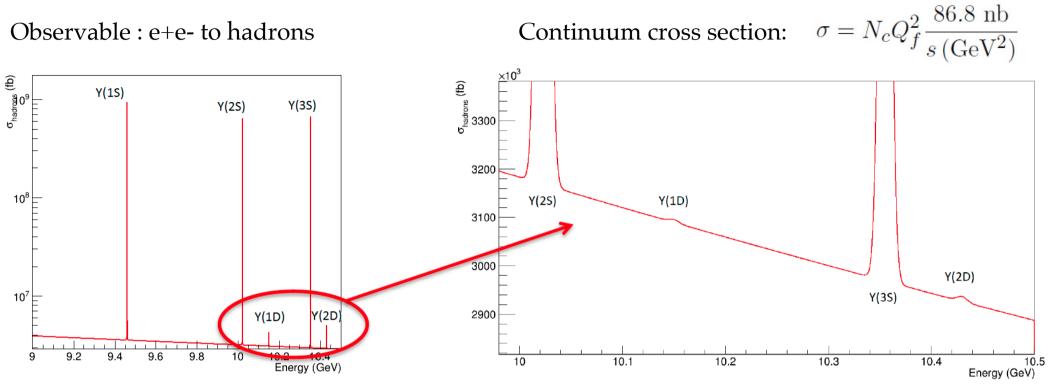
Eta vs dipion transitions with 120 fb⁻¹ at Y(5S)

- Dipion transitions main discovery tool for charged bottomonia (more Z_b 's?)


- Eta transitions : best pathway to Y(2D)?
- Y(6S) running will be staged: first 10 fb⁻¹, ... 50 fb⁻¹, ... 150 fb⁻¹

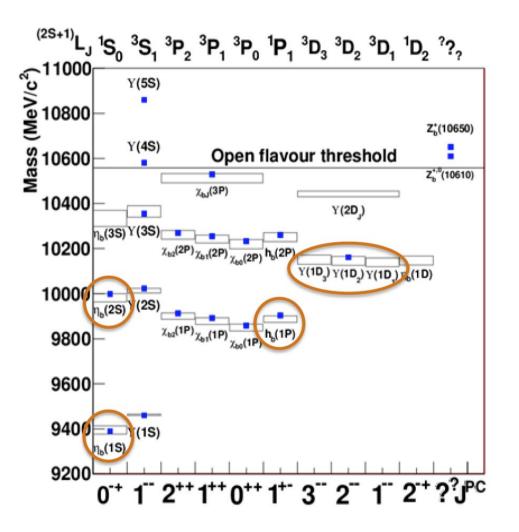

PANIC 2017 Beijing

R.Mussa, Bottomonium Physics Prospects at Belle II


$$\begin{split} \sigma_{_{Born}}[e^+e^- \to \eta \; Y_{_{1,2}}(1D)] &= (1.50 \pm 0.30 \pm 0.20) \text{ pb} \\ \sigma_{_{Born}}[e^+e^- \to \eta \; Y(2S)] &= (0.97 \pm 0.31 \pm 0.19) \text{ pb} \end{split}$$

$$\begin{split} &\sigma_{_{Born}}[e^+e^- \rightarrow \eta~Y(1S)] < 0.61~\text{pb} \\ &\sigma_{_{Born}}[e^+e^- \rightarrow \eta~h_{_b}(1P)] < 0.92~\text{pb} \\ &\sigma_{_{Born}}[e^+e^- \rightarrow \eta~h_{_b}(2P)] < 0.69~\text{pb} \end{split}$$

Scanning $Y(1,2^{3}D_{1})$?


Search for 1D: 7 point scan (5 MeV steps) around 10.15 GeV

Search for 2D: 7 point scan (5 MeV steps?) around 10.43 GeV

IF the 2S scan is successful, we may envisage a longer run on 2D peak and search for 1F states (single photon spectrum, probably large background from ISR Y(3S))

200fb⁻¹ ~7xBaBar (Phase 3+)

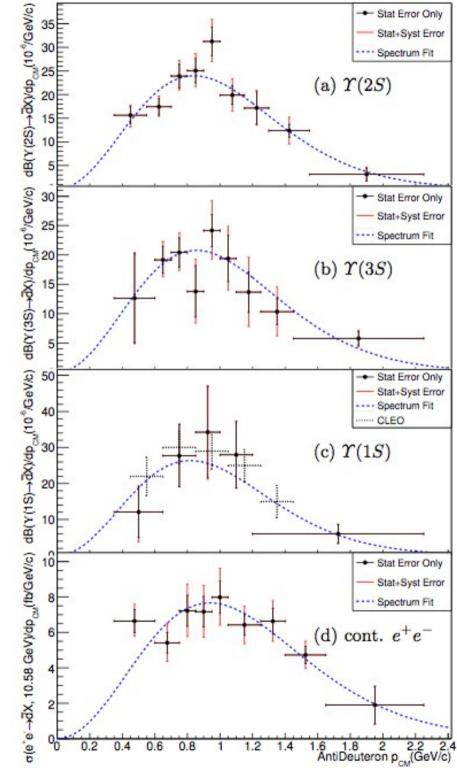
- $\Upsilon(1^3D_J)$ triplet
 - J=1,3 yet to be discovered
 - Pathways: 4γ, 2γ2π, incl. γ
- η_b(1S,2S)
 - Confirm m(η_b(1S,2S))
 - If $\Upsilon(3S) \rightarrow \gamma \eta_b(2S)$
 - $\ \, \chi_{b0}(2\mathsf{P}) \rightarrow \eta \ \eta_b(1\mathsf{S})$
- Hadronic (π^o,π⁺π⁻,η,ω) decays
 - Υ(3S)→π°h_b(1P), ηΥ(1S)
 - Ƴ(1D)→ηƳ(1S)
- Radiative transitions

Antinuclei in Y(3S) decays

CLEO results :

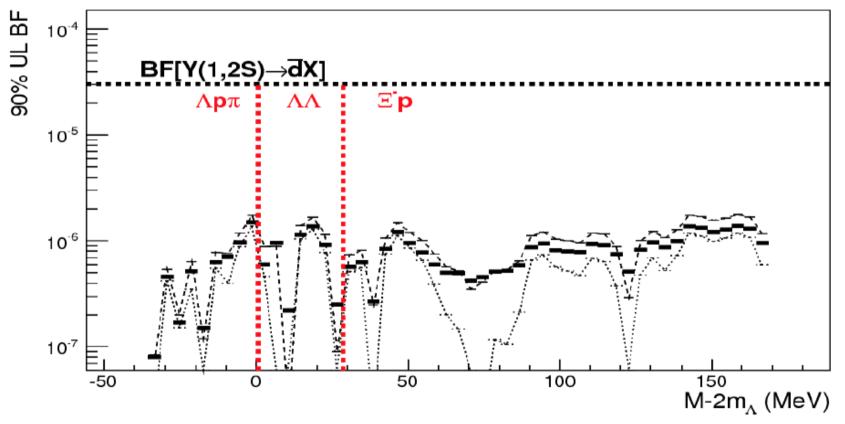
 $\mathcal{B}^{\text{dir}}(\Upsilon(1S) \to \bar{d}X) = (3.36 \pm 0.23 \pm 0.25) \times 10^{-5}.$

$$\mathcal{B}(\Upsilon(2S) \rightarrow \bar{d} + X) = (3.37 \pm 0.50 \pm 0.25) \times 10^{-5}$$


BABAR results :

Resonance	Onpeak	# of Υ Decays	Offpeak				
$\Upsilon(4S)$	$429{ m fb}^{-1}$	$463 imes 10^6$	$44.8\mathrm{fb}^{-1}$				
$\Upsilon(3S)$	$28.5\mathrm{fb}^{-1}$	$116 imes 10^6$	$2.63\mathrm{fb}^{-1}$				
$\Upsilon(2S)$	$14.4\mathrm{fb}^{-1}$	$98.3 imes 10^6$	$1.50\mathrm{fb}^{-1}$				
Process		Rate	Rate				
$\mathcal{B}(\varUpsilon(3S) ightarrow v)$	$\bar{d}X)$	$(2.33\pm0.15$	$(2.33\pm0.15^{+0.31}_{-0.28})\! imes\!10^{-1}$				
$\mathcal{B}(\varUpsilon(2S) ightarrow)$	$ar{d}X)$	$(2.64\pm0.11$	$(2.64\pm0.11^{+0.26}_{-0.21})\! imes\!10^{-}$				
$\mathcal{B}(\varUpsilon(1S) ightarrow v)$	$ar{d}X)$	$(2.81\pm0.49$	$(2.81\pm0.49^{+0.20}_{-0.24})\! imes\!10^{-}$				
$\sigma(e^+e^- ightarrow ar{d}$	$(X) \ [\sqrt{s} \approx 10.58]$	8 GeV] (9.63 ± 0.41)	$^{+1.17}_{-1.01}){ m fb}$				
$rac{\sigma(e^+e^e^-)}{\sigma(e^+e^-)}$,	$(3.01\pm0.13$	$^{+0.37}_{-0.31}) imes 10^{-1}$				

Production mechanism still unclear: coalescence? Associated $d\overline{d}$ production not checked by Babar Good target for future Y(3S) decays samples


PANIC 2017 Beijing

R.Mussa, Bottomonium I

Y(3S) to exa-quarks

Belle has extensively searched for the weakly bound Jaffe's H-dibaryon in Y(1,2S) in a broad mass range, setting limits at $O(10^{-1})$ the measured deuteron production

Belle-II will further investigate these channels, both with fully reconstructed final modes, and in missing mass.

Wrapping it up

Belle II will tackle most of the physics questions opened by the first generation on B-factories to understand the nature of bottomonium like states and to complete the standard spectrum.

Belle showed that Y(6S) running may have a large physics potential, even starting from the first period of data taking.

Hints for an exotic state at 10.75 GeV suggest further studies: and a fine scan through the whole Y(4S-6S) region will be needed.

At least 200 fb⁻¹ at (and about) the Y(3S) peak are needed to address the following hot topics :

- Rare η transitions Spectroscopy of D waves
- Hindered radiative transitions Exaquarks in Y decays

Scans of the Y(1D) and Y(2D) regions are being planned as well *Looking forward showing first results from Belle II in end* 2018

PANIC 2017 Beijing

State	$m ({ m MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X(3872)	3871.52 ± 0.20	1.3 ± 0.6 (<2.2)	$1^{++}/2^{-+}$	$B \to K(\pi^{+}\pi^{-}J/\psi)$ $p\bar{p} \to (\pi^{+}\pi^{-}J/\psi) + \dots$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^{0}})$ $B \to K(\gamma J/\psi)$ $B \to K(\gamma \psi(2S))$	 Belle [85, 86] (12.8), BABAR [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), BABAR [93] (4.0) Belle [94, 95] (6.4), BABAR [96] (4.9) Belle [92] (4.0), BABAR [97, 98] (3.6) BABAR [98] (3.5), Belle [99] (0.4) 	2003	ОК
X(3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$egin{aligned} B & ightarrow K(\omega J/\psi) \ e^+e^- & ightarrow e^+e^-(\omega J/\psi) \end{aligned}$	Belle [100] (8.1), BABAR [101] (19) Belle [102] (7.7)	2004	OK
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$e^+e^- ightarrow J/\psi(Dar{D}^*) \ e^+e^- ightarrow J/\psi \; ()$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- ightarrow \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	$4008^{+121}_{-\ 49}$	$226{\pm}97$	1	$e^+e^- o \gamma(\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B o K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	$139\substack{+113 \\ -65}$	$?^{?+}$	$e^+e^- ightarrow J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	$4248^{+185}_{-\ 45}$	$177^{+321}_{-\ 72}$?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108±14	1	$e^+e^- ightarrow \gamma(\pi^+\pi^- J/\psi)$ $e^+e^- ightarrow (\pi^0\pi^0 J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11) CLEO [111] (5.1)	2005	ОК
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B o K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6\substack{+4.6 \\ -5.1}$	$13.3^{+18.4}_{-10.0}$	$0,2^{++}$	$e^+e^- ightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	$96{\pm}42$	1	$e^+e^- o \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443_{-18}^{+24}	$107^{+113}_{-\ 71}$?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	$4634^{+ \ 9}_{-11}$	92^{+41}_{-32}	1	$e^+e^- o \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	$4664{\pm}12$	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	$10888.4{\pm}3.0$	$30.7\substack{+8.9 \\ -7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Belle-II Detector

CsI(TI), waveform sampling (barrel)

waveform sampling (end-caps)

EM Calorimeter:

electron (7GeV)

2 layers DEPFET + 4 layers DSSD

Central Drift Chamber

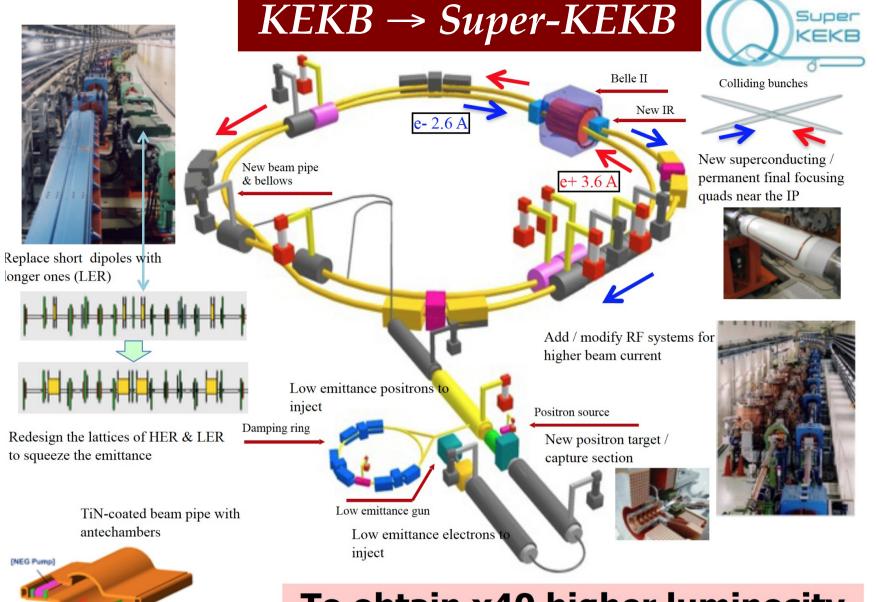
lever arm, fast electronics

He(50%):C₂H₆(50%), Small cells, long

Beryllium beam pipe

2cm diameter

Vertex Detector


[Belle II TDR, KEK Report 2010-1]

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Belle II outreach https://twitter.com/belle2collab/ https://www.facebook.com/belle2collab/

To obtain x40 higher luminosity

	Energy (GeV) LER/HER	y -	ε _x (nm) LER/HER	ξ _y LER/HER	φ (mrad)	I _{beam} (A) LER/HER	Luminosity (cm ⁻² s ⁻¹) x 10 ³⁴	
KEKB Achieved	3.5/8.0	5.9/5.9	18/24	0.129/0.090	11	1.64/1.19	2.11	24
SuperKEKB	4.0/7.0	0.27/0.41	3.2/2.4	0.09/0.09	41.5	3.6/2.62	80	

[SR Channel]