Search for Dark Particles at Belle and Belle II

Igal Jaegle

University of Florida

for the Belle and Belle II Collaborations

International Workshop on ee collisions from Phi to Psi
June 26 - 30, 2017
Mainz, Germany
Table of contents

1 Introduction

2 Setup

3 Search for a dark vector gauge boson

4 Search for the dark photon and the dark Higgs boson

5 Search for the dark photon and light dark matter

6 Conclusion
Search for new hidden forces / Introduction

Dark matter represents about 80% of all matters
- Dark matter naturally explained by Supersymmetry, but
- Absence of Supersymmetry in LHC gives new light to Dark Sector Models
- Search for new hidden forces accessible to Belle

PRD 75 115017 (2007)

- Coupling of charged matter to new, dark photon, \(A' \), \(q = \varepsilon e \)
- \(\mathcal{L} = -\frac{1}{2} \varepsilon F_{\mu\nu}^{\text{dark}} F_{\mu\nu} \)

Feynman diagram
- \(A' \) short or long lived or invisible

PRD 89 114008 (2014)

- Coupling of all quarks to new, baryonic boson, \(U' \), \(g_{U'} = \sqrt{4\pi\alpha_{U'}} \)
- \(\mathcal{L} = \frac{1}{3} g_{U'} \bar{q} \gamma^\mu q U'_\mu \)

Feynman diagrams for hadronic \(U' \) decay
- Above \(\pi \) threshold \(U' \) short lived

All models point to new particles with mass of the order of MeV – GeV
Search for new hidden forces / Introduction

Dark matter represents about 80% of all matters

- Dark matter naturally explained by Supersymmetry, but
- Absence of Supersymmetry in LHC gives new light to Dark Sector Models
- Search for new hidden forces accessible to Belle

▶ Branching ratio for A' decay

PRD 79 115008 (2008)

▶ Branching ratio for U' decay

PRD 89 114008 (2014)

All models point to new particles with mass of the order of MeV – GeV
KEKB and SuperKEKB

KEKB/SuperKEKB collider, located in Japan, Tsukuba, is the world's highest-luminosity electron-position collider

- 1999-2010: Belle collected $\mathcal{L}_{int} = 1050$ fb$^{-1}$ at $\Upsilon(1S, 2S, 3S, 4S, 5S)$ and continuum
- 2016-2026: Belle II (upgrade version of Belle) expects to collect $\mathcal{L}_{int} = 50$ ab$^{-1}$

Belle II $\mathcal{L}_{peak} = 8 \times 10^{35}$ cm$^{-2}$s$^{-1}$

Igal Jaegle (UF)

Dark Particle Searches

Psi/Phi 2017 5 / 16
Belle and Belle II experiments

CP violation measurement in the B-meson system with Belle and BABAR, established the Kobayashi Maskawa mechanism as a valid description of CP violation in the Standard Model.

Main motivations
- Study of CP violation (i.e. matter-antimatter asymmetry)
- Study of heavy flavor
- Search for physics beyond the Standard Model

Complementary to efforts at energy frontier

- Add PID in endcaps
- Add μ ID in endcaps
- Increase K_S efficiency
- Improve IP and secondary vertex resolution
- Improve π/K separation
- Improve π^0 efficiency

Belle II is an upgrade of Belle
Search for $U' \to \pi^+\pi^-$ in $D^0 \to K^0_S \eta$, $\eta \to U' \gamma$ using 977fb^{-1} of Belle data

Exclusive charm meson decays to reduce background

- $K^0_S \eta$ invariant mass
- $D^* - D^0$ mass difference

Cut on D^0 and mass difference and look at $\pi^+\pi^-\gamma$ invariant mass
Search for a light vector gauge boson

- Background estimated and subtracted using the side bands

\[\pi^+ \pi^- \gamma \text{ invariant mass} \]
\[\pi^+ \pi^- \text{-line shape fitted by } \frac{d\Gamma}{ds} \propto |P(s)F_V(s)|^2 (m_\eta^2 - s)^3 s(1 - 4m_\pi^2 / s)^{3/2} \]

[PLB 707, 243 (2012) and PLB 707, 184 (2012)]

- \(P(s) \) reaction-specific perturbative part
- \(F_V(s) \) pion vector form factor

- No signal found, example of \(U' \) MC sim. signal of 400 MeV/c² mass is shown
New Belle limit

95% CL limit on the baryonic fine structure constant

Better limit for $m_{U'} > 450\text{MeV}/c^2$ and $\phi \rightarrow e^+ e^- \gamma$
Search for the dark photon and the dark Higgs boson

Belle limits, PRL 114 211801 (2015). Production in the so-called Higgs-strahlung channels, $e^+e^- \rightarrow A'h'$, with $h' \rightarrow A'A'$.

- A' and h' assuming prompt decays
- $m_{h'} > 2m_{A'}$
- $0.1 < m_{A'} < 3.5 \text{ GeV}/c^2$ and $0.2 < m_{h'} < 10.5 \text{ GeV}/c^2$

α_D: dark sector constant
ε: kinetic mixing

- 10 exclusive channels: $3(l^+l^-), 2(l^+l^-)(\pi^+\pi^-), 2(\pi^+\pi^-)(l^+l^-)$, and $3(\pi^+\pi^-)$, where l^+l^- is an electron or muon pair
- 3 inclusive channels for $m_{A'} > 1.1 \text{ GeV}/c^2$: $2(l^+l^-)X$, where X is a dark photon candidate detected via missing mass

If $\alpha_D = 1$, Higgs-strahlung channels most sensitive to A'
Belle limits / results

- Belle limits for $L = 977 \text{ fb}^{-1}$ on $\mathcal{B} \times \sigma_{\text{Born}}$ and σ_{Born}
 - 90% CL upper limit for each of the 13 final states
 - 90% CL upper limit on the combined Born cross section

- 90% Credibility Level (CL) upper limit determined by Bayesian inference method with the use of Markov Chain Monte Carlo A'. Caldwell et al., CPC 180 (2009) 2197-2209

Limits from $3(\pi^+\pi^-)$ and $2(e^+e^-)X$ are the first placed by any experiment.
Limits on the product of $\alpha_D \varepsilon^2$ / results

Belle combined limits compared to $BABAR$ combined limits

- Belle limits for $\mathcal{L} = 977$ fb$^{-1}$ based on the Born cross section, ISR effect non negligible
- $BABAR$ limits for $\mathcal{L} = 520$ fb$^{-1}$ based on the visible cross section [PRL 108 211801 (2012)]

90% CL upper limit on the product $\alpha_D \times \varepsilon^2$ versus dark photon mass (top row) and dark Higgs boson mass (bottom row)

- Assuming branching fractions and couplings versus cross section from B. Batell et al. PRD 79 (2009) 115008

Results scale nearly linearly with integrated luminosity. This bodes well for future searches with Belle II.
Belle II prospects for the Higgs-strahlung channels

Predicted Belle II upper limits $U_{\alpha_D \varepsilon^2}$ in the $\alpha_D \varepsilon^2$ vs $m_{A'}$ vs $m_{h'}$ plane by scaling the Belle limits linearly with the integrated luminosity:

$$\frac{U_{\alpha_D \varepsilon^2}}{U_{\alpha_D \varepsilon^2}^0} = \frac{\mathcal{L}^0}{\mathcal{L}},$$

where the superscript 0 corresponds to Belle values. \mathcal{L} is integrated luminosity. The scaling uses both statistical and systematic uncertainties.

Igal Jaegle (UF)
Belle (II) prospect for the radiative decays

- $e^+e^- \rightarrow \gamma A', A' \rightarrow l^+l^-$, with $l = e$ or μ
- Belle II will have an improve low multiplicity trigger compared to Belle

Left: Belle II prediction. Right: preliminary Belle and Belle II preliminary fiducial detection efficiency for $A' \rightarrow \mu^+\mu^-$

Belle II will have a better efficiency for low momentum muon compared to Belle
Belle (II) prospect for the radiative decays

Predicted Belle II upper limits extrapolated from BABAR \cite{PRL_113_201801_2014} (C. Hearty, B2TIP2014)

- $e^+ e^- \rightarrow \gamma A', A' \rightarrow l^+ l^-$, with $l = e$ or μ
- Belle II dimuon invariant mass resolution improved by $\sim 35\%$ compared to Belle

Left: Belle II prediction. Right: simulation for $m_{A'} = 5.015 \text{ GeV}/c^2$

Complementary to fixed target experiments

Igal Jaegle (UF)
Dark Particle Searches
Psi/Phi 2017
Belle (II) prospect for the radiative decays

Predicted Belle II upper limits extrapolated from BABAR arxiv:0808.0017 (C. Hearty, B2TIP2014)

- $e^+e^- \rightarrow \gamma A', A' \rightarrow \chi\chi$, χ light dark matter R. Essig et al. arXiv:1309.5084
- Require implementation of a single photon trigger in Belle II

Left: Belle II prediction. Right: Simulated mono-energetic photon signature for $m_{A'} = 6 \text{ GeV}/c^2$

Belle II is expected to have a better single photon trigger with a lower energy sum than BABAR

Igal Jaegle (UF) Dark Particle Searches Psi/Phi 2017 15 / 16
Conclusion

- New Belle limit has been presented on the baryonic fine constant, $\alpha_{U'}$, in exclusive charm decays
 - $280 < m_{U'} < 550 \text{ MeV}/c^2$
 - We found that:
 ★ No signal found
 ★ Better limit for $m_{U'} > 450 \text{ MeV}/c^2$ and $\phi \rightarrow e^+e^-\gamma$

- Belle limits for prompt decays of the dark photon and the dark Higgs boson:
 - $0.1 < m_{A'} < 3.5 \text{ GeV}/c^2$
 - $0.2 < m_{h'} < 10.5 \text{ GeV}/c^2$
 - We found that:
 ★ No significant excess over the background estimation
 ★ Belle limit improvement scales nearly linearly with integrated luminosity

- Ongoing Belle analysis on $e^+e^- \rightarrow A'\gamma$ (prompt and displaced vertex), $e^+e^- \rightarrow \chi\chi\gamma$, $e^+e^- \rightarrow \mu^+\mu^-Z'$, and $e^+e^- \rightarrow \tau^+\tau^-(h'')$

- Belle II will also search for dark particles
- With 50 ab^{-1}, Belle II might potentially also cross-check any signals discovered by fixed target experiments
- First collisions in 2018 with partial vertex detector

Thank you for your attention