Studies of Dark Sector at Belle and Prospects with Belle II

Youngjoon Kwon

Yonsei University Seoul, Korea

May 15, 2017 @ BLV 2017

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II BLV 2017

1

Outline

- Searches for dark-sector
 - ✓ motivations & opportunities at e^+e^- *B*-factories
- Recent results from Belle
 - ✓ Dark-photon search via Higgsstrahlung
 - ✓ Search for dark-boson in η decays
- Prospects with Belle II

PRL 114, 211801 (2015) PRD 94, 092006 (2016)

Age of en**Dark**enment?

Motivations for dark photon, etc.

Linking SM and the Dark Sector

- Observations by PAMELA, AMS, etc. have triggered light-dark-matter scenarios.
- The dark sector can be connected to SM via the so-called "portals".
- At low mass scale, vector portal is the most accessible, but other portals, e.g. (pseudo)scalar, can also be probed.

$$H^{\dagger}H(AS + \lambda S^2)$$
Higgs portal(dim= 3, 4), $\kappa F^Y_{\mu\nu}F'_{\mu\nu}$ Vector portal(dim= 4), $Y_N \bar{L}HN$ Neutrino portal(dim= 4), $f_a^{-1}\bar{\psi}\gamma_{\mu}\gamma_5\psi\partial_{\mu}a$ Axion portal(dim= 5).

5

Dark photon & kinetic mixing – as a portal

- Dark photon, first proposed in P. Fayet, PL B95, 285 (1980)
- (Holdom, 1986) A boson A' belonging to an additional U(1)' would mix kinetically with γ

- in general, one can express kinetic mixing as $(1/2)\epsilon\,F_{\mu\nu}F'^{\mu\nu}$
- ϵ , the strength of the kinetic mixing, is supposed to be small, $(10^{-5} \sim 10^{-2})$.
- For A' to acquire mass, an extended Higgs sector is required to break this $U(1)^\prime$

What to look for with *B*-factories

What to look for with *B*-factories

$$\begin{split} e^+e^- &\to \gamma \; A'(\to \chi \bar{\chi}) \qquad e^+e^- \to \gamma \; A'(\to \ell^+\ell^-) \\ e^+e^- &\to \Upsilon(nS) \to \gamma A^0 \\ e^+e^- &\to h'(\to A'A')A' \; \text{ with } A' \to \ell^+\ell^- \end{split}$$

$$\begin{split} B &\to SS \to 2(\ell^+\ell^-) \\ B &\to K^{(*)}S \to K^{(*)}\ell^+\ell^- \qquad B \to K^{(*)}A'(\to \ell^+\ell^-) \\ B &\to K^{(*)}h' \text{ with } h' \to A'A' \to 2(\ell^+\ell^-) \\ B &\to 2h' \to 4A' \to 2(\ell^+\ell^-) \\ B \to A'A' \to 2(\ell^+\ell^-) \text{ through off-shell } h - h' \text{ mixing} \end{split}$$

B decay modes from Batell, Pospelov, Ritz, PRD 83, 054005 (2011)

some predictions

scalar portal case

$$\mathcal{L}_{S} = \frac{1}{2} (\partial_{\mu} S)^{2} - \frac{1}{2} m_{S}^{2} S^{2} - \left(\frac{\theta S}{\upsilon} + \frac{\lambda S^{2}}{m_{h}^{2}}\right) \mathcal{L}_{m} - \frac{A'}{6} S^{3} + \cdots$$

for technical naturality

$$\begin{split} \theta &\lesssim \frac{m_S}{m_h} \sim \mathcal{O}(10^{-2}) \times \left(\frac{m_S}{1 \text{ GeV}}\right), \\ A' &\lesssim (16\pi^2 m_S^2)^{1/2} \sim \mathcal{O}(10 \text{ GeV}) \times \left(\frac{m_S}{1 \text{ GeV}}\right) \end{split}$$

FIG. 1. Sensitivity of the *BABAR*/Belle data set to combined $B \rightarrow KS$ and $B \rightarrow K^*S$ decays in the dimuon channel. The region below the dashed line is technically natural as discussed in Eq. (5).

Batell, Pospelov, Ritz PRD 83, 054005 (2011)

some predictions $B \to K^{(*)}a(\to \gamma\gamma)$

PRL 118, 111802 (2017) by Izaguirre, Lin, Shuve

Dark photon search via Higgsstrahlung

Belle, PRL 114, 211801 (2015)

- Search mode depends on $M_{h'}$ and $M_{A'}$
- In this talk, only $M_{h'} > 2M_{A'}$ is considered $\Rightarrow h' \rightarrow A'A'$ is used
 - ✓ 'exclusive': 3 charged-track pairs, each with the same invariant mass
 - \checkmark 'inclusive': 2 charged-track pair, each with the same invariant mass, and missing (E, \vec{p})

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II BLV 2017 12

Event selection

- 3 (at least 2) lepton/hadron pairs (e^+e^- , $\mu^+\mu^-$, or $\pi^+\pi^-$)
 - 10 exclusive channels: $3e^+3e^-$, $3\mu^+3\mu^-$, $2e^+2e^-\mu^+\mu^-$, $2\mu^+2\mu^-e^+e^-$, $3\pi^+3\pi^-$, $2\pi^+2\pi^-e^+e^-$, $2\pi^+2\pi^-\mu^+\mu^-$, $2e^+2e^-\pi^+\pi^-$, $2\mu^+2\mu^-\pi^+\pi^-$, $e^+e^-\mu^+\mu^-\pi^+\pi^-$
 - 3 inclusive channels for $m_A>1.1~{\rm GeV/c^2:}{_{2e^+2e^-X,~2\mu^+2\mu^-X,~e^+e^-\mu^+\mu^-X}$
- impact parameters and χ^2 of vertex fit requirements
- consistent with (E, \vec{p}) conservation
- mass of each $\ell^+\ell^-$, $\pi^+\pi^-$ pair be consistent with $M_{A'}$

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II

Background

- estimated using "same-sign" pairs from $e^+e^- \rightarrow (\ell^+\ell^+)(\ell^+\ell^-)(\ell^-\ell^-)$
- Sort the pairs by invariant mass, $m_1 > m_2 > m_3$ then plot $m_1 - m_3$ vs. m_1
- For each $M_{\ell^+\ell^-}$ region, scale same-sign yield to $\ell^+\ell^-$ in the side-band, then extrapolate into the $M_{\ell^+\ell^-}$ signal region.

for 6π mode, with $m_1 = 2 \text{ GeV}/c^2$

- 19% of events due to $3(\pi^+\pi^-)$
- 74% of events due to $2(\pi^+\pi^-) X$

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II

Results – Limits on $\mathcal{B} \times \sigma_{\text{Born}}$

$$N_{\rm obs} = \sigma_{\rm Born} \ (1+\delta) |1 - \Pi(s)|^2 \ \mathcal{L} \ \mathcal{B} \ \epsilon + N_{\rm bkg}$$

- $(1 + \delta)$ from E.A. Kuraev and V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985)
- $|1 \Pi(s)|^2$ from S. Actis *et al.*, Eur. Phys. J. C 66, 585 (2010) and F. Ignatov, http://cmd.inp.nsk.su/~ignatov/vpl/.
- Limits are obtined from Bayesian method, using Markov Chain Monte Carlo¹
 - * logarithmic prior for $\sigma_{\rm Born}$
 - * gaussian prior for other parameters

¹A. Caldwell, D. Kollar, K. Kröninger, BAT -The Bayesian Analysis Toolkit, Comp. Phys. Comm. 180, 2197 (2009).

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II

• $\epsilon \lesssim 8 \times 10^{-4}$ for $\alpha_D = 1/137, M_{h'} < 8 \text{ GeV}/c^2, M_{A'} < 1 \text{ GeV}/c^2$

✓ Compare with BaBar limits with 516 fb^{-1} PRL 108, 211801 (2012)

- first limits (by any experiment) on $3(\pi^+\pi^-)$ and $2(e^+e^-)X$
- expect linear improvement with more data (almost background-free for many modes)

Youngjoon Kwon (Yonsei Univ.)

Search for $\eta \to U'(\to \pi^+\pi^-)\gamma$ at Belle

Belle, PRD 94, 092006 (2016)

• Search for a dark vector boson U' that couples to quarks $(U' \rightarrow \pi^+\pi^-)$

 \checkmark to constrain the baryonic fine structure constant $\alpha_{U'} \equiv g_{U'}^2/4\pi$, where the interaction is given by $\mathcal{L} = (1/3)g_{U'}\bar{q}\gamma^{\mu}qU'_{\mu}$

à la S. Tulin, PRD 89, 114008 (2014)

- Use Belle data sample of 976 fb⁻¹
- To suppress combinatorial background, demand:
 - $\checkmark \eta$ to come from $D^0 \to K^0_S \eta$
 - $\checkmark D^0$ to come from $D^{*+} \rightarrow D^0 \pi^+$

Search for $\eta \to U'(\to \pi^+\pi^-)\gamma$ at Belle

- γ selection
 - ✓ $E_{\gamma} > 60 (100)$ MeV for barrel (endcap) ✓ "E9/E25" > 0.85
- K_S^0 selection by neural net
- vertex χ^2 cut for η and mass-constraint
- $p_{D^*}^{\rm cm} > 2.5$, 2.6, 3.0 GeV for \sqrt{s} below, at, or above $\Upsilon(4S)$ resonance

Youngjoon Kwon (Yonsei Univ.)

Search for $\eta \to U'(\to \pi^+\pi^-)\gamma$ at Belle

- $N_{\eta} = 2974 \pm 90$ events by binned max. likelihood fit to $M(\pi^{+}\pi^{-}\gamma)$
- Cross-check by measuring the ratio

$$\frac{\mathcal{B}(\eta \to \pi^+\pi^-\gamma)}{\mathcal{B}(\eta \to \pi^+\pi^-\pi^0)} = 0.185 \pm 0.007$$

c.f. 0.184 \pm 0.004 for W.A.

- Fit to $M(\pi^+\pi^-)$ after η sideband subtraction
 - ✓ global shape: QCD-based $d\Gamma/ds$ ✓ add U' part with $\sigma_M \sim (1 \sim 2)$ MeV

Results for $\eta \to U'(\to \pi^+\pi^-)\gamma$

Youngjoon Kwon (Yonsei Univ.)

Studies of Dark Sector at Belle and Prospects with Belle II

Prospects with Belle II

for the next Luminosity Frontier

Belle II milestones

- Phase 1 (Feb. 2016): beam commissioning + beam background measurements
 - ✓ circulate beams; no collision
 - ✓ BEAST II (in place of Belle II) as a commissioning detector
- Recent highlights
 - ✓ Final Quads installed in Feb. 2017
 - ✓ Belle II roll-in on Apr. 11, 2017
- Phase 2 (Dec. 2017): Detector in place without SVD + PXD
 - ✓ Dark-sector search can start!
- Phase 3 (Nov. 2018): Start physics run with full Belle II detector

Dark-photon prospects with Belle II

Dark-photon prospects (wider view)

Youngjoon Kwon (Yonsei Univ.)

Closing words

- *B*-factory experiments are not merely good old CPV/CKM machines, but they probe much wider regions of physics.
 - * e.g. exotic particles, heavy invisible particles, dark sector, etc.
- Dark photon searches at e^+e^- *B*-factories become available one by one.
 - * Depending on the mass parameters of the dark sector, significant limists have been obtained in O(GeV) region.
 - * But there are many other modes which have yet to be explored.
 - * Please stay tuned for Belle II