

Physics Prospects at Belle II

Kazuhito Suzuki Nagoya University On behalf of the Belle II Collaboration

18th Lomonosov Conference, Moscow

Physics motivations and goals

- CP violation (CPV) in the quark sector was elucidated by B-factories.
 An essential part of the SM.
- The CPV is too small to account for the baryon-antibaryon asymmetry in the universe.

-There must be undiscovered source(s) of CPV.

- The SM does not provide answers to various fundamental questions.
 - -Fermion generations and mass hierarchy,
 - -Diagonal hierarchy of the CKM matrix,
 - -Constitution of Higgs sector, etc.

Belle II will search for new physics (NP) in the flavor sector at the intensity frontier.

Experimental strategy

- Upgrade the accelerator and detector.
 - -Luminosity: $L = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (40x Belle).
 - >Intending to accumulate $\int Ldt \sim 50 ab^{-1}$ (50x Belle).
 - >Mitigating the beam BG level to be \sim 20x Belle.
 - Better detector performance.
 >Tolerable to the high BG level.
- Running on ↑(4S) mostly, utilizing the clean e+ecollision environment and good detector hermiticity.
 –Full event reconstruction with kinematic constraint.
- Utilize the reach of indirect NP searches.
 - -Reach of the NP energy scale can be pushed up to $\sim O(100 \text{ TeV})$.
 - –Through W^{\pm} exchange processes with τ .
 - –Through quantum loop processes of Flavor Changing Neutral Current (FCNC).
 - -Over-constraining the Unitary Triangle.

SuperKEKB accelerator

KEK (Tsukuba, Japan)

- Doubled currents
 - -Giving 2x L.
- Asymmetric energy collision
 - -Time-dependent CP asymmetry meas.

8th Lomonosov Conference, Moscow

Belle II detector

Leptonic and semileptonic B decays (1)

- B \rightarrow D^(*) $\tau \nu$
 - $R(D^{(*)})$ measurements show deviations from the SM.
 - > Combined result is 4.1 σ away $\hat{\underline{f}}_{\underline{\omega}}$ from the SM.
 - Hint of NP which violates the lepton universality?

➤ Charged Higgs, leptoquark, …

ū.d

ū.d

D9.(+), D+.(+)

Leptonic and semileptonic B decays (1)

- B \rightarrow D^(*) $\tau \nu$
 - $R(D^{(*)})$ measurements show deviations from the SM.
 - > Combined result is 4.1 σ away from the SM.
 - Hint of NP which violates the lepton universality?
 Charged Higgs, leptoquark, …
 - The uncertainties will be reduced to 2-3% at 50 ab⁻¹ in Belle II.

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_{\tau})}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})}$$

| = e, µ

Leptonic and semileptonic B decays (2)

- $B \rightarrow \tau \nu$
 - -BF is sensible to NP.
 - > 4 σ level signal evidences in Belle and BaBar.
 - ≻ Currently consistent with SM.
 - The uncertainty will be reduced to 5-6% at 50 ab⁻¹ in Belle II.

$$\Gamma^{\rm SM}(B^- \to \ell^- \nu_\ell) = \frac{G_{\rm F}^2 m_B m_\ell^2}{8\pi} |V_{ub}|^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2$$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{NP}} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{SM}} \times \mathrm{NP}$$

Leptonic and semileptonic B decays (2)

- $B \rightarrow \tau \nu$
 - –BF is sensible to NP.
 - > 4 σ level signal evidences in Belle and BaBar.
 - \succ Currently consistent with SM.
 - \succ The uncertainty will be reduced to 5-6% at 50 ab⁻¹ in Belle II.
 - Another excellent mode to test the lepton universality.

$$\Gamma^{\rm SM}(B^- \to \ell^- \nu_\ell) = \frac{G_{\rm F}^2 m_B m_\ell^2}{8\pi} |V_{ub}|^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2$$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{NP}} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{SM}} \times \mathrm{NP}$$

30/08/2017

18th Lomonosov Conference, Moscow

Leptonic and semileptonic B decays (2)

- $B \rightarrow \tau \nu$
 - -BF is sensible to NP.
 - > 4 σ level signal evidences in Belle and BaBar.
 - ➤ Currently consistent with SM.
 - The uncertainty will be reduced to 5-6% at 50 ab⁻¹ in Belle II.
 - Another excellent mode to test the lepton universality.
 - -If no NP, can extract $IV_{ub}I$.
 - > Independent from $b \rightarrow u l \nu$.

1	BF _{SM}	BF _{Exp}		
τ	(7.71±0.62) x 10 ⁻⁵	(1.06±0.19) x 10 ⁻⁴		
μ	(3.46±0.28) x 10 ⁻⁷	< 1.0 x 10 ⁻⁴		
е	$(0.811 \pm 0.065) \times 10^{-11}$	< 0.98 x 10 ⁻⁴		

$$\Gamma^{\rm SM}(B^- \to \ell^- \nu_\ell) = \frac{G_{\rm F}^2 m_{\rm B} m_\ell^2}{8\pi} \left(V_{ub} \right) \left(1 - \frac{m_\ell^2}{m_B^2} \right)^2 f_B^2$$

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{NP}} = \mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell)_{\mathrm{SM}} \times \mathrm{NP}$$

Leptonic and semileptonic B decays (3)

Leptonic and semileptonic B decays (3)

• b \rightarrow ul ν , cl ν (l = μ , e) 0.0060 0.0055 $-IV_{ub}I$ and $IV_{cb}I$ determinations. 0.0050 \succ Using incl. and excl. final states. 0.0045 $\succ \delta |V_{ub}| \sim 5\%, \ \delta |V_{cb}| \sim 2\%.$ > 90.0040 > Large $X_c | v$ BG in $X_u | v$ mode. 0.0035 \succ QCD predictions for form factors, 0.0030 inclusive processes, quark masses. 0.0025 – Tension: incl. vs excl. meas. 0.0020 0.032 \succ |V_{ub}|: X_u| ν vs π | ν \gg |V_{cb}|: X_c| ν vs D^(*)| ν

Leptonic and semileptonic B decays (3)

- b \rightarrow ul ν , cl ν (l = μ , e)
 - $-IV_{ub}I$ and $IV_{cb}I$ determinations.
 - \succ Using incl. and excl. final states.
 - > $\delta |V_{ub}| \sim 5\%$, $\delta |V_{cb}| \sim 2\%$.
 - > Large $X_c I \nu$ BG in $X_u I \nu$ mode.
 - QCD predictions for form factors, inclusive processes, quark masses.
 - Tension: incl. vs excl. meas.
 - $> |V_{ub}|: X_u | v vs \pi | v$
 - \gg |V_{cb}|: X_c| ν vs D^(*)| ν
 - Major effort with much higher statistics at Belle II is required to improve the precisions.
 - > More detailed BG decomposition.
 - Further progress in QCD calc. 30/08/2017
 18th Lomonosov Conference, Moscow

QCD penguin b \rightarrow s transitions (1)

- Indirect CPV (ICPV) in b→sqq
 - ICPV: interference between the non-mixed and mixed decays to a CP eigenstate.
 - Giving a time-dependent CP asymmetry $(A(\Delta t))$.
 - For the tree-dominant $b \rightarrow c\overline{c}s$ transitions,

$$\succ S = -\eta_{\rm f} \sin 2\phi_1, C = 0,$$

- $\gg \eta_{\rm f}$: CP eigenvalue of the final state.
- For the penguin-dominant $b \rightarrow s\bar{q}q$ transitions,
 - \succ Same as b \rightarrow ccs in SM.
 - \succ If NP exists through the loop of FCNC, the S and C terms may change. 18th Lomonosov Conference, Moscow

30/08/2017

$$\mathcal{A}(\Delta t) = \frac{f_{+}(\Delta t) - f_{-}(\Delta t)}{f_{+}(\Delta t) + f_{-}(\Delta t)}$$

$$= S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)$$

 Δt : decay time difference between B^0 and \overline{B}^0

QCD penguin $b \rightarrow s$ transitions (2)

- Indirect CPV (ICPV) in b→sqq (cont'd)
 - Currently b→sqq show
 consistent results with b→ccs.
 - The uncertainties (δ) will be reduced significantly at 50 ab⁻¹
 - > b→ccs: to 20-25% of present δ, systematics limited.
 - > b→sqq: to ~15% of present δ , mostly scaled to the luminosity.
 - ➢ Both are theoretically clean.
 - Will probe NP through the precision meas. on sin2 ϕ_1 .

b→ccs	World Average			0.69 ± 0.02
φ	Average	H	★ -1	0.74 ^{+0.11} -0.13
η΄ K ^o	Average	اخ ا		0.63 ± 0.06
$K_{\rm S} K_{\rm S} K_{\rm S}$	Average	⊢	- 1	$\textbf{0.72} \pm \textbf{0.19}$
π [°] K [°]	Average	⊢★	-1	0.57 ± 0.17
-] ρ⁰ Κ _S	Average	⊢★		0.54 ^{+0.18} -0.21
ωK _s	Average	—	 1	0.71 ± 0.21
$f_0 K_S$	Average	<u> </u>	-1	0.69 +0.10 - 0.12
$f_2 K_S$	Average +	*		0.48 ± 0.53
$f_X K_S$	Average	*	4	0.20 ± 0.53
π ^⁰ π ^۹ K _S	Average			-0.72 ± 0.71
$\phi \ \pi^0 \ K_{_{\rm S}}$	Average		*	0.97 ^{+0.03} -0.52
$\pi^+ \pi^- K_S$	NAverage			0.01 ± 0.33
$K^+ K^- K^0$	Average		-1	0.68 +0.09 - 0.10
-1.6 -1.4	-1.2 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6	0.8	1 1.2 1.4 1.6

QCD penguin $b \rightarrow s$ transitions (3)

- Direct CPV (DCPV) in $B \rightarrow K \pi$
 - DCPV: interference between $A_{CP}(B \to f) = \frac{\Gamma(\bar{B} \to \bar{f}) \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)}$ amplitudes to a final state. $= -C \text{ for } f = f_{CP}$

> Giving a time-integrated CP asymmetry (A_{CP}).

QCD penguin $b \rightarrow s$ transitions (3)

- Direct CPV (DCPV) in $B \rightarrow K \pi$
 - DCPV: interference between amplitudes to a final state.
 - > Giving a time-integrated CP asymmetry (A_{CP}) .
 - Non-negligible contributions from several diagrams.
 - ➢ Because of suppressed charmless b→u, s transitions.
 - A sum rule of A_{CP} was proposed.
 - Applying the isospin symmetry to the leading contributions.
 - > Violation could be NP in b \rightarrow sqq.

Phys. Lett. B 627, 82 (2005)

QCD penguin $b \rightarrow s$ transitions (3)

• Direct CPV (DCPV) in $B \rightarrow K \pi$

- DCPV: interference between to a final state.
 - > Giving a time-integrated CP asymmetry (A_{CP}) .
- Non-negligible contributions from several diagrams.
 - > Because of suppressed charmless $_{-0.4}$ b→u, s transitions.
- A sum rule of A_{CP} was proposed.
 - Applying the isospin symmetry to the leading contributions.

> Violation could be NP in b \rightarrow sqq.

– Important to systematically study all K π modes with high precision in Belle II.

 $-A_{\rm CP}(K^0\pi^0)\frac{2\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^0\pi^0)}$

B≁K π Belle Belle II $B \rightarrow K \pi$ Belle II 50 ab⁻¹ 0.40.2SM 🕈 0 -0.2-0.50.5 SM (NLO, NNLO, NNLO+LD) Phys. Lett. B 627, 82 (2005) $I_{K\pi} \equiv A_{\rm CP} (K^+ \pi^-) + A_{\rm CP} (K^0 \pi^+) \frac{\mathcal{B}(K^0 \pi^+)}{\mathcal{B}(K^+ \pi^-)} \frac{\tau_0}{\tau_0}$ $-A_{\rm CP}(K^+\pi^0)\frac{2\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)}\frac{\tau_0}{\tau}$

τ decays

- Lepton Flavor Violation (LFV) decays
 - The BFs/ULs are expected to be improved by ~2 orders of magnitude at Belle II.
 - -Any enhancement from the SM predictions $(BF\sim10^{-25})$ indicate clear signal of NP.

> NP can enhance BFs up to 10^{-8} .

Prospect on Unitarity Triangle

Future prospect

Summary

- Belle II will search for new physics beyond the SM in the flavor sector at the intensity frontier.
 - W-exchanging process with τ ,
 - One loop FCNC processes,
 - Over-constraining the Unitarity Triangle.
- The physics prospects at Belle II indicate exciting future.
 - New physics hunting,
 - Significant progress in flavor physics.