CP Violation sensitivity at Belle II

Fernando J. Abudinén G.

CP Violation in the Standard Model

- CP Violation (CPV) in the Standard Model (SM) occurs in weak interactions through the CKM mechanism. $\Rightarrow \mathbf{V}_{CKM}$.
- The CKM matrix \mathbf{V}_{CKM} rotates the mass eigenstates into the weak eigenstates.

$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \left(\begin{array}{c} \end{array} \right)$	$\left(egin{array}{c} V_{ud} \\ V_{cd} \\ V_{td} \end{array} ight)$	$V_{us} V_{us} $	$\begin{pmatrix} ub \\ cb \\ tb \end{pmatrix} \left(\begin{pmatrix} ub \\ ub \\ ub \end{pmatrix} \right)$	$\begin{pmatrix} d \\ s \\ b \end{pmatrix}$
--	---	--	--	---

- Free parameters: 3 real and 1 imaginary. The latter is responsible for the CP Violation in the SM.
- Unitarity $\Sigma_k V_{ki}^* V_{kj} = 0$ leads to 6 relations represented by triangles in the complex plane. One of the triangles is related to the B_d system \Rightarrow

$V_{ud}V_{ub}^*$ +	$-V_{cd}V_{cb}^* +$	$-V_{td}V_{tb}^*$	= (
${\cal O}(\lambda^3)$	${\cal O}(\lambda^3)$	${\cal O}(\lambda^3)$	

 \Rightarrow largest CPV within the B_d system.

The Flavor Tagger

• The flavor tagger is responsible for the determination of the flavor q of B_{tag}^0 . It considers decays with flavor specific signatures (charges of final state tracks) and sizeable branching fractions ($\mathcal{B} > 2\%$).

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

• The information related to the kinematics and the particle identification of the tracks and the clusters which remain from the reconstruction of $B_{\rm CP}^0 \to f_{\rm CP}$ is combined using boosted decision trees (BDT). The method returns the flavor q = +1(-1) for $B^0(\bar{B}^0)$ multiplied by a dilution factor $r \in [0, 1]$.

Time Dependent CP-analysis of $B^0 \rightarrow \pi^0 \pi^0$

- The CP asymmetries of $B^0 \to \pi^0 \pi^0$ are required to deter-g mine the CKM angle ϕ_2 .
- At present, there is not enough data to perform the timedependent analysis.
- \Rightarrow 8-fold ambiguity in ϕ_2 from $B \rightarrow \pi\pi$.
- Belle II will have enough data to exploit rare events with converted photons $\gamma_c \rightarrow e^+e^-$ and with $\pi^0_{\text{Dalitz}} \rightarrow e^+e^-\gamma$ decays.

Belle II

∆t / ps

 Δt (ps)

 Δt (ps)

 $\bar{B}_{ ext{tag}}^0$

 $B_{
m tag}^0$

 $B_{\rm tag}^0$

 \bar{B}_{tag}^0

- Due to asymmetric beam energies $\Rightarrow \Upsilon(4S)$ is produced with boost:
- $\Rightarrow \Delta t \approx \frac{\Delta z}{\langle \beta \gamma \rangle c}$ since the $B^0 \bar{B}^0$ pair is at rest in $\Upsilon(4S)$ frame.
- The $B^0 \bar{B}^0$ pair is quantum mechanically entangled in order to keep the $\Upsilon(4S)$ wave function properties. For a given Δt , the probability that one B^0 decays to a CP eigenstate $f_{\rm CP}$ and that the other B^0 has the flavor q $(q_{B^0,\bar{B}^0} = 1, -1)$ at the time of its decay is described by

$$\mathcal{P}^{\text{Sig}}(\Delta t, q) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + q \left(\mathcal{A}_{\text{CP}}\cos(\Delta m \Delta t) + \mathcal{S}_{\text{CP}}\sin(\Delta m \Delta t)\right)\right].$$

- \mathcal{A}_{CP} : CP violation in decay (Direct CP violation). \mathcal{S}_{CP} : CP violation in the interference between mixing and decay (Mixing-Induced CP violation).
- In order to measure the CP asymmetries \mathcal{A}_{CP} and \mathcal{S}_{CP} by fitting $\mathcal{P}^{Sig}(\Delta t, q)$, three tasks are required: Reconstruction of $B_{CP}^0 \to f_{CP}$, reconstruction of both B^0 vertices (Δz) and determination of the flavor q of the accompanying B^0_{tag} .

Determination of ϕ_2 via Isospin Analysis

- The CKM angle ϕ_2 is related to the CP asymmetries of the decays $B \to \pi\pi$ and $B \to \rho \rho$. However, because of non-negligible penguin contributions, the value of ϕ_2 cannot be extracted directly. The way out: isospin symmetry gives rise to two relations between the decay amplitudes from which one can extract the value of ϕ_2 .
- The isospin analysis requires the branching fractions \mathcal{B}_{+0} , \mathcal{B}_{+-} , \mathcal{B}_{00} together with the CP asymmetries \mathcal{A}_{+-} , \mathcal{S}_{+-} , \mathcal{A}_{00} and \mathcal{S}_{00} (the subscripts denote the pion or rho charges). Without \mathcal{S}_{00} , the ϕ_2 value has an 8-fold ambiguity in the case of $B \to \pi \pi$, and is less precise in the case of $B \to \rho \rho$.

