CP Violation sensitivity at Belle II

Max-Planck-Institut für Physik

Fernando J. Abudinén G.

CP Violation in the Standard Model

- CP Violation (CPV) in the Standard Model (SM) occurs in weak interactions through the CKM mechanism. $\Rightarrow \mathbf{V}_{C K M}$.
- The CKM matrix $\mathbf{V}_{C K M}$ rotates the mass eigenstates into the weak eigenstates.

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{c|c|c}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- Free parameters: 3 real and 1 imaginary. The latter is responsible for the CP Violation in the SM.
- Unitarity $\Sigma_{k} V_{k i}^{*} V_{k j}=0$ leads to 6 relations represented by triangles in the complex plane. One of the triangles is related to the B_{d} system \Rightarrow

$$
\begin{aligned}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
& \mathcal{O}\left(\lambda^{3}\right) \\
& \mathcal{O}\left(\lambda^{3}\right) \\
& \mathcal{O}\left(\lambda^{3}\right)
\end{aligned}
$$

\Rightarrow largest CPV within the B_{d} system.
Latest CKM fit of the B_{d} Unitarity Triangle

Sides ~
Branching frac. $+B^{0} \bar{B}^{0}$ Mixing

Angles ~
CP Asymm.

Possible scenarios with $\int \mathcal{L} \cdot d t=50 \mathrm{ab}^{-1}$ at Belle II \Rightarrow

SM-like scenario

New physics scenario

Time Dependent CP-Violation Analysis

- Due to asymmetric beam energies $\Rightarrow \Upsilon(4 \mathrm{~S})$ is produced with boost:
$\Rightarrow \Delta t \approx \frac{\Delta z}{\langle\beta \gamma\rangle c}$ since the $B^{0} \bar{B}^{0}$ pair is at rest in $\Upsilon(4 \mathrm{~S})$ frame
- The $B^{0} B^{0}$ pair is quantum mechanically entangled in order to keep the $\Upsilon(4 \mathrm{~S})$ wave function properties. For a given Δt, the probability that one B^{0} decays to a CP eigenstate f_{CP} and that the other B^{0} has the flavor $q\left(q_{B^{0}, \bar{B}^{0}}=1,-1\right)$ at the time of its decay is described by

$$
\mathcal{P}^{\mathrm{Sig}}(\Delta t, q)=\frac{e^{-|\Delta t| \mid \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1+q\left(\mathcal{A}_{\mathrm{CP}} \cos (\Delta m \Delta t)+\mathcal{S}_{\mathrm{CP}} \sin (\Delta m \Delta t)\right)\right] .
$$

- $\mathcal{A}_{\mathrm{CP}}$: CP violation in decay (Direct CP violation). $\mathcal{S}_{\mathrm{CP}}: \mathrm{CP}$ violation in the interference between mixing and decay (Mixing-Induced CP violation)
- In order to measure the CP asymmetries $\mathcal{A}_{\mathrm{CP}}$ and $\mathcal{S}_{\mathrm{CP}}$ by fitting $\mathcal{P}^{\mathrm{Sig}}(\Delta t, q)$ three tasks are required: Reconstruction of $B_{\mathrm{CP}}^{0} \rightarrow f_{\mathrm{CP}}$, reconstruction of both B^{0} vertices (Δz) and determination of the flavor q of the accompanying B_{tag}^{0}

The Flavor Tagger

- The flavor tagger is responsible for the determination of the flavor q of B_{tag}^{0}. It considers decays with flavor specific signatures (charges of final state tracks) and sizeable branching fractions ($\mathcal{B}>2 \%$).

The information related to the kinematics and the particle identification of the tracks and the clusters which remain from the reconstruction of $B_{\mathrm{CP}}^{0} \rightarrow f_{\mathrm{CP}}$ is combined using boosted decision trees (BDT). The method returns the flavor $q=+1(-1)$ for $B^{0}\left(\bar{B}^{0}\right)$ multiplied by a dilution factor $r \in[0,1]$.

Time Dependent CP-analysis of $B^{0} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0}$
The CP asymmetries of $B^{0} \rightarrow \pi^{0} \pi^{0}$ are required to determine the CKM angle ϕ_{2}.

- At present, there is not enough data to perform the timedependent analysis
$\Rightarrow 8$-fold ambiguity in ϕ_{2} from $B \rightarrow \pi \pi$
- Belle II will have enough data to exploit rare events with converted photons $\gamma_{\mathrm{c}} \rightarrow e^{+} e^{-}$and with $\pi_{\text {Dalitz }}^{0} \rightarrow e^{+} e^{-} \gamma$ decays

Determination of ϕ_{2} via Isospin Analysis

- The CKM angle ϕ_{2} is related to the CP asymmetries of the decays $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$. However, because of non-negligible penguin contributions, the value of ϕ_{2} cannot be extracted directly. The way out: isospin symmetry gives rise to two relations between the decay amplitudes from which one can extract the value of ϕ_{2}
- The isospin analysis requires the branching fractions $\mathcal{B}_{+0}, \mathcal{B}_{+-}, \mathcal{B}_{00}$ together with the CP asymmetries $\mathcal{A}_{+-}, \mathcal{S}_{+-}, \mathcal{A}_{00}$ and \mathcal{S}_{00} (the subscripts denote the pion or rho charges). Without \mathcal{S}_{00}, the ϕ_{2} value has an 8 -fold ambiguity in the case of $B \rightarrow \pi \pi$ and is less precise in the case of $B \rightarrow \rho \rho$.

