

Charm CPV and Mixing prospects at the Belle II Experiment

Nibedita Dash Indian Institute of Technology Bhubaneswar

(for the Belle II Collaboration)

Outline :

- Introduction
- Charm CPV prospects at the Belle II
- Charm Mixing prospects at the Belle II
- Conclusions

2nd Flavour Physics Conference

ICISE, QUY NHON, VIETNAM, AUGUST 13 - 19, 2017

Introduction

- Precise measurement of UT parameters
- New sources of CP violation
- Belle II will have a rich charm physics program: it should improve precision of mixing/CPV parameters, direct CP asymmetries etc..
- Lepton Flavour Violation in B and τ decays
- New physics search in missing energy modes of B decays, Dark matter, charged Higgs, etc..

N. Dash

Belle II Detector

KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

> positrons (4GeV)

* See the talk by Tadeas

N. Dash

B Factory Improvements

dow

ECL cluster time [/0.37ns]

2500

3000

2000

1500

L. W. M. Marine

500

1000

104

- machine background rejection
- $K_{_{S}}$, π^{0} and slow pions reconstruction efficiency
- Clean experimental environment, low track multiplicity and detector occupancy (w.r.t hadron collider)
 - High B, D, K, tau reconstruction efficiency
 - open trigger ~99% efficient

N. Dash

Mixing & CP violation

N. Dash

CP violation

q/p $\neq 1 \Rightarrow$ indirect CP violation q/p $\neq |q/p| * e^{i\varphi}$: • $|q/p| \neq 1 \Rightarrow$ CP violation in mixing • $\varphi \neq 0(\pi) \Rightarrow$ CP violation in interference of decays w/ and w/o mixing • D⁰ only, common to all decay modes

 $|D_{1,2}^{0}\rangle = p|D^{0}\rangle \pm q|\overline{D}^{0}\rangle$

Level of CP violation in the SM hard to estimate. Expected asymmetries $O(10^{-3})$ (CHARM) All three species (D⁰, D⁺, D_s⁺), decay mode dependent

N. Dash

CPV in $D^0 \rightarrow h^{\scriptscriptstyle +} h^{\scriptscriptstyle -}$ decays , h= K, π

N. Dash

Direct CPV in D Decays

50fb⁻¹

%

0.03

0.03

0.03

Belle measurements extrapolated to 50 ab⁻¹

Extrapolation:

$$\sigma_{Bellell} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

mainly due to K⁰-K⁰ interaction asymmetry

Now

%

0.15

0.14

0.17

Time-integrated measurements: Prospects

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ${ m ab}^{-1}$	LHCb
$D^0 ightarrow K^+ K^-$	976	$-0.32\pm 0.21\pm 0.09$	±0.03	Manauramant
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55\pm 0.36\pm 0.09$	± 0.05	Measurement
$D^0 ightarrow \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09	D^0 L^+L^-
$D^0 ightarrow K^0_s \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03	$D \rightarrow K K$
$D^0 ightarrow K_s^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07	
$D^0 ightarrow K^0_s \eta'$	791	$+0.98\pm 0.67\pm 0.14$	± 0.09	$D' \rightarrow K_{c}K'$
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	± 0.13	5
$D^0 ightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40	$D^+ \downarrow K \pi^+$
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	± 0.33	$D_{s} \rightarrow K_{S} \pi$
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04	
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14	
$D^+ o \eta^\prime \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14	
$D^+ ightarrow K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03	
$D^+ ightarrow K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05	
$D^+_s ightarrow K^0_s \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29	
$D^+_s ightarrow K^0_s K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.05	
$D^+ \rightarrow \pi^+ \pi^0$			±(0.2 - 0.4)	

ArXiv:1208.3355

• Only D^* tagging method considered and A_{CP} precision will reach $O(10^{-4})$ better than the current theoretical predictions

• Belle II will provide best precision for **neutral particle final states**, but will be competitive with LHCb for charged particle final states as well

• Both forthcoming experiments, Belle II and LHCb upgrade are complimentary to each other !!

N. Dash

Charm prospects Belle II [Belle2-PUB-DRAFT-2016-012]

- The outer radius of the SVD detector has been significantly increased from 8.8 to 14.0 cm
- Large various of SVD will allow % more KS candidates whose daughters have associated SVD hits
- Expect similar systematic error in Belle II
- irreducible sys. err. due to the neutral K interactions in the material (0.01 x 10^{-2})
- Large fraction of systematics will be reduced With higher statistics
- Dominant error arises from ACP measurements of $K_s \pi^0$ errors on $K_s \pi^0$ will reduce with increased statistics at Belle II

N. Dash

D⁰→ Vy

Int. luminosity	$A_{CP}(D^0 \to \rho^0 \gamma)$		
$1 {\rm ~ab^{-1}}$	$+0.056 \pm 0.152 \pm 0.006$		
$5 {\rm ~ab^{-1}}$	± 0.07		
15 ab^{-1}	± 0.04		
50 ab^{-1}	± 0.02		
	$A_{CP}(D^0 \to \phi \gamma)$		
$1 {\rm ~ab^{-1}}$	$-0.094 \pm 0.066 \pm 0.001$		
$5 {\rm ~ab^{-1}}$	± 0.03		
$15 \ {\rm ab}^{-1}$	± 0.02		
50 ab^{-1}	± 0.01		
	$A_{CP}(D^0 \to \overline{K}^{*0}\gamma)$		
$1 {\rm ~ab^{-1}}$	$-0.003 \pm 0.020 \pm 0.000$		
$5 {\rm ~ab^{-1}}$	± 0.01		
$15 \ {\rm ab}^{-1}$	± 0.005		
50 ab^{-1}	± 0.003		
	Int. luminosity $1 ab^{-1}$ $5 ab^{-1}$ $15 ab^{-1}$ $50 ab^{-1}$ $1 ab^{-1}$ $5 ab^{-1}$ $15 ab^{-1}$ $50 ab^{-1}$ $1 ab^{-1}$ $5 ab^{-1}$		

	Belle	Belle II	5
Signal efficiency	9.8%	7.2%	
Signal Mean	1.8645±0.0003	1.8642±0.0003	
Signal width	0.0122±0.0001	0.0164±0.0002	
π^{o} bkg. mean	1.8428±0.0007	1.8421±0.0005	
π^{o} bkg. width	0.0187±0.0003	0.0194±0.0003	

- Same selection criteria used for Belle II sensitivity study as in Belle
- The resolution looks similar on the Belle II sample, compared to Belle, but background is a challenge.

N. Dash

Charm prospects Belle II [Belle2-PU

[Belle2-PUB-DRAFT-2016-012]

Proper time resolution

N. Dash

Charm prospects Belle II [Belle2-PUB-DRAFT-2016-012]

a factor two

Mixing in D Decays: Prospects w Belle II

Belle II

Analysis	Observable	Uncertainty(%)				
		Now (~ 1 ab ⁻¹)	L = 50ab ⁻¹	Improved t resol.		
	X	0.20	0.11	(ToyMC)		
$D^0 \rightarrow K_s \pi^+ \pi^-$	У	0.16	0.05			
	q/p φ	17.8 12.2	7.0-7.4 4.0-4.2			
D ⁰ → π ⁺ π ⁻ ,K ⁺ K ⁻	У _{ср} А _Г	0.24 0.22	0.05-0.08 0.03-0.05			
$D^0 \rightarrow \pi^- K^+$	x' x'² y'	0.022 0.34	0.003 0.04	0.15 - 0.10		
	q/p φ	0.6 0.44 rad	0.06 0.04 rad	0.051 0.09		

do better on x' and y' than just scaling

N.B. statistical error and some systematics scale by luminosity, but other systematics do not.

[Belle2-PUB-DRAFT-2016-012] (LHCb: arXiv:1208.3355)

Conclusions

- > CP violation was searched in many decay modes
- > No evidence found for CPV in the charm sector
- Prospects for these measurements at Belle II were also discussed in some cases the sensitivity would reach a 0.03% level.
- Belle II will have a rich charm physics program: it should improve precision of mixing/CPV parameters, direct CP asymmetries.
- Belle II will implement novel tagging method (ROE) to increase statistics and The expected improvement combining the two Flavour tagging techniques (D* & ROE) is ~15%, depending on the purity of the sample.
- CPV in D decays is a challenge for the upcoming upgrades of LHCb and Belle ; Belle II will provide results competitive and complementary to LHCb.

only estimated in $D^0 \rightarrow K_{\sigma} \pi \pi$ @ Belle II

N. Dash

Thank You...!!

N. Dash

BACK UP

Rare decays

predicted BF a few x 10^{-8}

Belle result 8.5x10⁻⁷ @ 90% C.L.

(PRD 93, 051102(R), 2016; 832 fb-1 data)

expected to reach $10^{-7} \sim 10^{-8}$ (with full Belle II data)

dominate the precision of the BF(D⁰ $\rightarrow \gamma\gamma$) with 50ab⁻¹ , to a relative accuracy of around 20%-30%

	Observables	Belle or LHCb*	Be	lle II	LHCb
		(2014)	5 ab^{-1}	50 ab^{-1}	$2018 \ 50 \ {\rm fb}^{-1}$
Charm Rare	$\mathcal{B}(D_s o \mu u)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%	
	$\mathcal{B}(D_s o au u)$	$5.70 \cdot 10^{-3} (1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%	
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%	

N. Dash

Charm prospects Belle II

[Belle II Internal Note]

 $\mathbf{D}^+ \rightarrow \mathbf{K}_{s}\mathbf{K}^+, \mathbf{K}_{s}\pi^+$

PRL 109, 021601 (2012), JHEP 02, 98(2013)

• KS efficiency associated charged pion silicon hits is improved by the upgrade of the silicon vertex detector by around 30%:

N. Dash

$D^0 \rightarrow KK,\pi\pi$

time-integrated $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ 977 fb⁻¹ preliminary: $A \equiv A_{KK} - A_{mm} = (-0.87 \pm 0.41 \pm 0.06)\%$

Source	$\Delta A_{CP}^{K^+K^-} \left[10^{-2} \right]$	$\Delta A_{CP}^{\pi^+\pi^-} \ [10^{-2}]$
Signal counting	0.055	0.023
Slow pion correction	0.065	0.067
A_{CP} extraction	0.006	0.050
total syst. error	0.085	0.087
stat. error	0.210	0.360

Expected precision for future measurements

- Slow π correction uncertainty: Flavor od D*,
- scales with integrated luminosity
- ACP extraction: Calculation of final CP asymmetry in the bins of different kinematic variable
- higher statistics, uncertainty becomes negligible

Irreducible errors:

Signal counting: Possible difference between the background

shape in signal and sideband intervals of ${f Q}$

$$\sigma_{\text{total}}^{A_{CP}^{K^+K^-}} = \sqrt{(0.220 + 0.066^2) \times 0.976 \text{ ab}^{-1} / \mathcal{L}_{\text{int}} + 0.055^2} [\times 10^{-2}]$$

$$\sigma_{\text{total}}^{A_{CP}^{\pi^+\pi^-}} = \sqrt{(0.370 + 0.085^2) \times 0.976 \text{ ab}^{-1} / \mathcal{L}_{\text{int}} + 0.018^2} [\times 10^{-2}]$$

• Experiment better in charm 2-body decay ~30%

N. Dash

Belle T

Charm prospects Belle II

[Belle II Internal Note]

• Tagging kaons are mostly back-to-back

• Tagging efficiency (ϵ) = 15 %, mis-tagging level (w) < 5%, after vetoing presence of neutral kaons K_L and K_s in the ROE [from MC truth]

• A novel tagging method which will: increase statistics with an additional D⁰ sample and will be very useful to evaluate systematics independently.

- a: Ratio between the statistical error on a A_{CP} measurement using the two different flavour tagging methods (D* and ROE, given by σ^{X} and σ^{0}) as a function of the purity of D⁰ samples.
- b: Ratio between the combined statistical error (σ^{c}) and the statistical error from the D* method.
- Reference point for the ratio of the purity of D⁰ samples: 1.4 [PhysRevD.87.012004]

• In the best case, assuming the value 1.4 for Belle II, we can expect a reduction of ~15% of the statistical error on a $A_{_{CP}}$ measurement.

N. Dash

Charm prospects Belle II [BELLE2-MTHESIS-2016-007]

1.9E

1.8

	KEKB Design	KEKB Achieved : with crab	SuperKEKB Nano- Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0
β_{y}^{*} (mm)	10/10	5.9/5.9	0.27/0.30
β_x^* (mm)	330/330	1200/1200	32/25
ε _x (nm)	18/18	18/24	3.2/5.3
ϵ_y/ϵ_x (%)	1	0.85/0.64	0.27/0.24
σ _y (μm)	1.9	0.94	0.048/0.062
ξ _y	0.052	0.129/0.090	0.09/0.081
$\sigma_{z}(mm)$	4	6 - 7	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6
N _{bunches}	5000	1584	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80

Nano-beams are the key (vertical spot size is ~50nm !!)

Table of Belle II detector performance parameters

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium double-wall	Cylindrical, inner radius 10 mm, 10 μm Au, 0.6 mm Be, 1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel (DEPFET)	Sensor size: $15 \times 100 (120) \text{ mm}^2$ pixel size: $50 \times 50 (75) \mu \text{m}^2$ 2 layers: 8 (12) sensors	10 M	impact parameter resolution $\sigma_{z_0} \sim 20 \ \mu m$ (PXD and SVD)
SVD	Double sided Silicon strip	Sensors: rectangular and trapezoidal Strip pitch: 50(p)/160(n) - 75(p)/240(n) μm 4 layers: 16/30/56/85 sensors	245 k	
CDC	Small cell drift chamber	56 layers, 32 axial, 24 stereo r = 16 - 112 cm $- 83 \le z \le 159 \text{ cm}$	14 k	$\begin{aligned} \sigma_{r\phi} &= 100 \ \mu \text{m}, \ \sigma_z &= 2 \ \text{mm} \\ \sigma_{p_t} / p_t &= \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2} \\ \sigma_{p_t} / p_t &= \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2} \ \text{(with SVD)} \\ \sigma_{dE/dx} &= 5\% \end{aligned}$
TOP	RICH with quartz radiator	16 segments in ϕ at $r \sim 120$ cm 275 cm long, 2 cm thick quartz bars with 4x4 channel MCP PMTs	8 k	$N_{p.e.} \sim 20, \sigma_t = 40 \text{ ps}$ $K/\pi \text{ separation :}$ efficiency > 99% at < 0.5% pion fake prob. for $B \rightarrow \rho \gamma$ decays
ARICH	RICH with aerogel radiator	4 cm thick focusing radiator and HAPD photodetectors for the forward end-cap	78 k	$N_{p.c.} \sim 13$ K/ π separation at 4 GeV/ c : efficiency 96% at 1% pion fake prob.
ECL	CsI(Tl)	Barrel: $r = 125 - 162$ cm	6624	$\frac{\sigma E}{E} = \frac{0.2\%}{E} \oplus \frac{1.6\%}{3/E} \oplus 1.2\%$
	(Towered structure)	End-cap: $z =$ -102 cm and +196 cm	1152 (F) 960 (B)	$\sigma_{pos} = 0.5 \text{ cm}/\sqrt{E}$ (E in GeV)
KLM	barrel: RPCs	14 layers (5 cm Fe + 4 cm gap) 2 RPCs in each gap	θ: 16 k, φ: 16 k	$\Delta \phi = \Delta \theta = 20$ mradian for K_L ~ 1 % hadron fake for muons
	end-caps: scintillator strips	14 layers of $(7 - 10) \times 40 \text{ mm}^2$ strips read out with WLS and G-APDs	17 k	$\Delta \phi = \Delta \theta = 10 \text{ mradian for } K_L$ $\sigma_p/p = 18\% \text{ for } 1 \text{ GeV}/c K_L$

SuperKEKB/Belle II is the intensity frontier facility for B mesons, charm mesons and tau leptons.

Belle II

		LER (e+)	HER (e-)	units
Beam Energy	E	4	7	GeV
Half Crossing Angle	ϕ	41	5	mrad
Horizontal Emittance	ε_{x}	3.2(2.7)	2.4(2.3)	nm
Emittance ratio	$\varepsilon_y/\varepsilon_x$	0.40	0.35	%
Beta Function at the IP	β_x^*/β_y^*	32 / 0.27	25 / 0.41	mm
Horizontal Beam Size	σ_x^*	10.2(10.1)	7.75(7.58)	μm
Vertical Beam Size	σ_{y}^{*}	59	59	nm
Betatron tune	ν_x/ν_y	45.530/45.570	58.529/52.570	
Momentum Compaction	α_c	2.74×10^{-4}	1.88×10^{-4}	
Energy Spread	σ_{ε}	$8.14(7.96) \times 10^{-4}$	$6.49(6.34) \times 10^{-4}$	
Beam Current	Ι	3.60	2.62	A
Number of Bunches/ring	nb	2503		
Energy Loss/turn	U_0	2.15	2.50	MeV
Total Cavity Voltage	V_c	8.4	6.7	MV
Synchrotron Tune	ν_s	-0.0213	-0.0117	
Bunch Length	σ_z	6.0(4.9)	5.0(4.9)	mm
Beam-Beam Parameter	ξy	0.0900	0.0875	
Luminosity	Ĺ	8 ×	10 ³⁵	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Table 2.2: Machine Parameters of SuperKEKB. Values in parentheses denote parameters at zero beam currents.

Source	$\pi^0\pi^0$	$K_S^0 \pi^0$
Signal shape	± 0.03	± 0.01
Slow pion correction	± 0.07	± 0.07
A_{CP} extraction method	± 0.07	± 0.02
K^0/\overline{K}^0 -material effects	-	± 0.01
Total	± 0.10	± 0.07

	κ _s κ _s			
Source	Systematic uncertainty, in %			
Signal shape	± 0.01			
Peaking background	± 0.01			
$K^0/\bar{K^0}$ material effects	± 0.01			
A_{CP} measurement of $K_S^0 \pi^0$	± 0.17			
Total	± 0.17			

Typical Correctly Tagging Events $cc \rightarrow D^0 D^-X, D^0 \rightarrow signal ch$ $D^- \rightarrow K^{*0}e^-v; K^{*0} \rightarrow K^+\pi^$ $cc \rightarrow D^0 \Lambda_c^-X, D^0 \rightarrow signal ch$ $\Lambda_c^- \rightarrow \Delta^{---} K^{*+}; K^{*+} \rightarrow K^+\pi^0$

24

KEKB upgrade → SuperKEKB(nano-beam)

N. Dash

26

estimated error on	current	Belle + BABAR	scaled	Toy MC with improved σ_t	
	HFAG	I.5/ab	50/ab	50/ab, no CPV	50/ab, CPV
×' (%)	-	(*) 0.98	(*) 0.45	(*) 0.22	0.15
x'² (%)	-	0.0195	0.009	0.0044	-
y' (%)	-	0.321	0.16	0.047	0.10
q/p	0.1	_	_	_	0.051
Φ (deg)	10	-	-	-	5.7

N. Dash