

Belle II status and prospects for exotic hadron spectroscopy

Pavel Krokovny Budker Institute of Nuclear Physics and Novosibirsk State University

ovosibirsk

KEK, Tsukuba, Japan

Super KEKB

SuperKEKB

Tracking system

ponent	Туре	Configuration	Readout	Performance	
		CDC			
		PXD			

Component	Type	Configuration	Readout	Performance
Beam pipe	Beryllium	Cylindrical, inner radius 10 mm,		
	double-wall	$10 \ \mu m$ Au, 0.6 mm Be,		
		1 mm coolant (paraffin), 0.4 mm Be		
PXD	Silicon pixel	Sensor size: 15×100 (120) mm ²	10 M	impact parameter resolution
	(DEPFET)	pixel size: 50×50 (75) μm^2		$\sigma_{z_0}\sim 20~\mu{ m m}$
		2 layers: 8 (12) sensors		(PXD and SVD)
SVD	Double sided	Sensors: rectangular and trapezoidal	245 k	
	Silicon strip	Strip pitch: $50(p)/160(n) - 75(p)/240(n) \ \mu m$		
		4 layers: 16/30/56/85 sensors		
CDC	Small cell	56 layers, 32 axial, 24 stereo	14 k	$\sigma_{r\phi}=100~\mu{ m m},\sigma_z=2~{ m mm}$
	drift chamber	r = 16 - 112 cm		$\sigma_{p_t}/p_t = \sqrt{(0.2\% p_t)^2 + (0.3\%/\beta)^2}$
		$-83 \le z \le 159 \text{ cm}$		$\sigma_{p_t}/p_t = \sqrt{(0.1\% p_t)^2 + (0.3\%/\beta)^2}$ (with SVD)

Vertexing performance

Belle T

Central **D**rift **C**hamber

Track reconstruction efficiency

Barrel PID: Time of Propagation

Forward PID: Aerogel RICH

Belle T

 $n_1 = 1.045, n_2 = 1.055$

Electromagnetic Calorimeter

- High rates (machine+physics) ⇒ upgrade of electronics
 - shorter signal shaping (1000ns —> 500ns)
 - the waveform is sampled (~2MHz)
 - waveform fit to extract signal time and amplitude

Belle calorimeter: 8736 CsI(TI) crystals 6624 Barrel 1152 Fwd Endcap 960 Bwd Endcap

Energy resolution vs background

Belle II ECL trigger efficiency (simulation) compared to Belle ECL efficiency

tot					
	٤ (total)	8	ε _{bkg}		
Belle	99.42 %	88.70 %	10.72 %		
Belle II	99.90 %	99.12 %	0.78 %		

Physics trigger: E > 1 GeV

11

The KLong and Muon detector

- 14 iron layers 4.7cm thick
- 15 barrel active layers
 - ✓ 2 x [scintillator strips + WLS + SiPM] ← NEW
 - ✓ 13 x [double glass RPC + 5 cm orthogonal phi, z strips]
- 14 endcap active layers
 - ✓ 14 x [scintillator strips + WLS + SiPM] \Leftarrow NEW
- All endcap active layers + 2 innermost layers in barrel replaced with scintillator strips to resist neutron background
- Installation is complete
- Commissioning with cosmic rays ongoing

Physics program

- CPV in B decays (B $\rightarrow J/\psi K^0$, $K^0\pi^0\gamma$, $K\pi$)
- (Semi)leptonic B decays (B \rightarrow D^(*)lv, π lv, τ v, μ v)
- Rare B decays $(B \rightarrow Kvv, X_s\gamma, X_sll, \gamma\gamma)$
- Charm physics (D \rightarrow lv, mixing, CPV)
- LFV tau decays ($\tau \rightarrow 31, 1\gamma$)
- Dark Sector, Spectroscopy (early physics)

Observables	Expected th. accuracy	Expected exp. uncer-	Facility (2025)
		tainty	
UT angles & sides			
$\phi_1 \ [^\circ]$	***	0.4	Belle II
ϕ_2 [°]	**	1.0	Belle II
ϕ_3 [°]	***	1.0	Belle II/LHCb
$ V_{cb} $ incl.	***	1%	Belle II
$ V_{cb} $ excl.	***	1.5%	Belle II
$ V_{ub} $ incl.	**	3%	Belle II
$ V_{ub} $ excl.	**	2%	Belle II/LHCb

Schedule

BEAST

BEAST Result Touschek Scattering

Belle II roll-in

April 11

Cosmic ray run (June)

Belle II

- Systems included: CDC, TOP, ECL, KLM
- Magnetic field: 1.5 T

Phase II

Phase 2: BEAST and partial Belle II

Phase 3: Full Belle II detector

Commissioning of accelerator and detectors

- Start beginning of 2018, duration ~5 months
- Beam collisions with focusing magnets (QCS)
- Target luminosity is 10³⁴ cm⁻²s⁻¹
- ~20-40 fb⁻¹ for physics analyses
- W/o vertex detector → no time dependent measurements,

What can be done with Phase 2 data?

- → Background studies
- → Detector and trigger performance studies
- → Simulation validation
- → Exercising of calibration and alignment procedures
- → Reconstruction algorithm tuning
- → Physics measurements

Energy scan

Zb's @ Belle

Z_b[±](10610) and Z_b[±](10650) is discovered in Y(nS) π[±] and h_b(mP) π[±] @ Y(5S)

PRL 108, 122001 (2012)

- ✓ Z_{b}^{0} (10610) is observed in Y(nS) π^{0} @ Y(5S) PRD 88, 052016 (2013)
- ✓ $Z_{b}^{\pm}(10610) \rightarrow B*B$ and $Z_{b}^{\pm}(10650) \rightarrow B*B*$ observed at Y(5S) (dominant decay channels) PRL 116, 212001 (2016)
- ~ 3.3 σ for $Z_{\rm b}^{\pm}(10610)$ at Y(6S) PRL 117, 142001 (2016)

Study of Y(6S) decays

Quarkonia transitions, Y(6S) decays to known states:

- Y(nS) $\pi\pi$ and Y(mD) $\pi\pi$
- Y(nS) η and Y(mD) η
- $Y(nS) K^{+}K^{-}$
- χ_b(mP) ω

Search for new conventional bottomonia states:

- hb(3P) by ππ
- Y(2D) by ππ & η

Search for exotic states

Search for exotic states in Y(6S) decays to:

- $Z_{b}^{\pm} \pi^{\mp} \rightarrow Y(nS) \pi^{+}\pi^{-}$ • $Z_{b}^{\pm} \pi^{\mp} \rightarrow h_{b}(mP) \pi^{+}\pi^{-}$ • $Z_{b}^{\pm} \pi^{\mp} \rightarrow \eta_{b} \pi^{+}\pi^{-}$ • $W_{b}^{0} \pi^{+}\pi^{-}$ with $W_{b}^{0} \rightarrow \eta_{b} \pi, \chi_{b} \pi, Y(nS)\rho$ • $X_{b}^{0} \gamma$ with $X_{b}^{0} \rightarrow Y(1S)\omega$
- •BB*

B** spectroscopy

Y(6S) is close to B B** threshold

Low multiplicity events

Trigger:

- $\sim 100\%$ efficient for B and charm decays
 - Low multiplicity events challenging because of large QED background
- Belle trigger was not optimized for low multiplicity
- Improvements of level 1 (L1) hardware trigger at Belle II:
 - > Data rate increased from 16 to 190 Mbps
 - Logic implemented in FPGAs instead of hard coded
- Software based high level trigger (HLT) runs full reconstruction

Development of triggers for low multiplicity:

 Search for new physics in low multiplicity events with phase 2 data

Invisible decays of Y(nS)

Summary

- Belle II phase 2 will start in 2018
- Accelerator and detector are commissioning. Expecting 20-40 fb⁻¹ of data w/o vertex detector
- First physics opportunities:
- > Exotic states and bottomonium studies @ Y(6S)
- > Dark photon search with single photon trigger
- More details in The Belle II Physics Book (to be submitted to PTEP)
- Stay tuned for news from Belle II
 - > https://twitter.com/belle2collab
 - > https://www.facebook.com/belle2collab