Prospects for LFV studies at the Belle II experiment

T. Lück on behalf of the Belle II collaboration

13th Rencontres du Vietnam, Neutrinos

July 18th 2017

- Introduction and Motivation
- LFV in τ decays
- Belle II and SuperKEKB
- LF(U)V violation in $B
 ightarrow D^{(*)} au
 u$ decays

2/28

- Prospect at Belle II
- Summary

Motivation

- lepton flavor conserved in the SM
- even if including neutrino oscillation into SM tiny rates: $BF(\tau \rightarrow \mu\gamma) \approx \mathcal{O}(10^{-40})$ and $BF(\tau \rightarrow \mu\mu\mu) \approx \mathcal{O}(10^{-14})$ (EPJ C8 (1999) 513)
- unobservable with current experiments (including Belle II)
- any observed signal will hint to new physics
- τ heaviest lepton:
 - many different decay channels
 - strong coupling to new physics is expected

(ロ) (同) (E) (E) (E)

Sizable enhancement of BF by new physics models for LFV tau decays

model	reference	$\tau \to \mu \gamma$	$\tau \to \mu \mu \mu$
$SM + \nu$ oscillations	EPJ C8 (1999) 513	10^{-40}	10^{-14}
$SM+heavy\;Maj\; u_{R}$	PRD 66(2002)034008	10^{-9}	10^{-10}
Non-universal Z'	PLB 547(2002)252	10^{-9}	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10^{-8}	10^{-10}
mSUGRA+seesaw	PRD 66(2002)115013	10^{-7}	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10^{-10}	10 ⁻⁷

• current upper limits for these decays are of the order of 10^{-8}

4/28

• BF measurements may not be enough to distinguish different theory models

ratios between different channels can help to distinguish various theory models

	SUSY+GUT (SUSY+seesaw)	Higgs mediated	little Higgs	non-univ. Z'-boson	
$\frac{BF(\tau \rightarrow \mu \mu \mu)}{BF(\tau \rightarrow \mu \gamma)}$	$pprox 2 imes 10^{-3}$	pprox 0.06 - 0.1	0.4-2.3	pprox 16	
$\frac{BF(\tau \rightarrow \mu ee)}{BF(\tau \rightarrow \mu \gamma)}$	$pprox 1 imes 10^{-2}$	$pprox 1 imes 10^{-2}$	0.3-1.6	pprox 16	
$BF(\tau \rightarrow \mu \gamma)$	$< 10^{-7}$	$< 10^{-10}$	$< 10^{-10}$	$< 10^{-9}$	
JHEP 0705, 013 (2007); PLB 547, 252 (2002)					

LFV searches at B-factories

- clean environment: $e^+e^- \rightarrow \tau^+\tau^-$
- large cross section: $\sigma(ee \rightarrow \tau \tau) \approx 0.91 \text{nb} \ (\sigma(ee \rightarrow b\bar{b}) \approx 1.05 \text{nb})$
- many channels: $\tau \to \ell \gamma$; $\tau \to \ell \ell \ell$; $\tau \to \ell V^{0}$; $\tau \to \ell P^{0}$; $\tau \to \ell S^{0}$; $\tau \to \ell h h'$; $\tau \to \Lambda h$; $\tau \to p \ell \ell$

Similar reconstruction for all channels. As example $\tau \rightarrow \mu \pi \pi$

- divide event into two hemispheres
- tag side: select one-prong decays $\tau \rightarrow \ell \nu \nu$ or $\tau \rightarrow h \nu$
- signal side: reconstruct $m_{\tau} = \sqrt{E_{\mu\pi\pi}^2 - p_{\mu\pi\pi}^2}$ and $\Delta E = E_{\tau}^* - E_{beam}^*$
- extract signal in $\Delta E m_{\tau} p$ lane

Major Backgrounds

≣ •∕) ৭ ে 7 / 28 • current best limits from BaBar (PRL 104, 021802 (2010))

 $\tau \to \ell \gamma$

8/28

 $\tau \to \ell \ell \ell$

- currently best upper limit from Belle (Phys.Lett.B 687,139 (2010))
- \bullet data sample 782 fb⁻¹
- very clean due to good PID
- no events found in signal region
- BF $<(1.5-2.7)\times 10^{-8}$ at 90% CL

Summary of current measurements

90% CL upper limits on τ LFV decays

- currently 48 different LFV modes measured
- sensitivity on the BF is currently of the order of 10^{-8}
- UL from LHCb will improve with run2 data, but only for a subset of channels

SuperKEKB: a next generation B-factory

- instantaneous luminosity: $L = 8 \times 10^{35} \text{cm}^{-2} \text{s}^{-2}$
- goal int. luminosity $50 \mathrm{ab}^{-1}$ by 2025
- new technologies: nano beam scheme

The Belle II detector

KL and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter Csl(TI), waveform sampling electronics

electrons (7 GeV)

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

Central Drift Chamber Smaller cell size, long lever arm

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Belle II TDR, arXiv:1011.0352

NURSERSERSER

-

Challenges for Belle II

higher luminosity also higher backgrounds ($\approx 40 \times$ wrt. Belle)

- fast readout electronics to reduce pile up effects in the ECL
- smaller boost wrt. Belle \Rightarrow better z-resolution needed
 - 2 layer Pixel + 4 layer of strip detectors (Belle: 4 layer strip det.)
- new and improved PID in Barrel region: imaging Time-of-Propagation detector
- added PID in the forward region (ARICH)
- new drift chanber: longer lever arm, smaller cells for inner layers, fast readout

・ロン ・回と ・ヨン・

Highlights for Belle II and SuperKEKB

Current and past highlights

- beam commissioning Feb. -June 2016 (no collisions)
- roll-in of Belle II April 2017
- currently taking cosmic data (CDC, EMC, KLM, TOP) with 1.5T B-field

Reconstructed cosmic event

Upcoming highlights

- first collisions February 2018:
 - partial detector (only segment of vertex detectors)
 - $(20\pm20){\rm fb}^{-1}$ data used for physics analyses
- start of data taking
 - late 2018
 - full detector

SuperKEKB luminosity projection

• $50ab^{-1}$ by the end of 2025

• pprox 50imes the Belle data sample, pprox 100imes the BaBar data sample and

- Extrapolation of existing results to 50ab⁻¹; no background included into the Belle II studies (best case scenario)
- NOTE: LHCb measurement not updated in this plot

Sensitivity study on MC: $\tau \rightarrow \mu \gamma$

- full MC study with background included
- compatible results wrt. Belle on 90% CL UL for BF even with higher background:
 - Belle: $< 4.5 \times 10^{-8}$ (535fb⁻¹)
 - Belle II MC study: $< 2.7 \times 10^{-8}$ (1000 fb⁻¹)
- naive extrapolation to $50 \mathrm{ab}^{-1}$: 5.5×10^{-10}

イロト イヨト イヨト イヨト

Leptons as probes for new physics

- leptons are sensitive to new physics
- also Lepton Flavour Universality Violating (LFUV) modes are interesting
- Iook at ratios

•
$$R(K^{(*)}) = \frac{BF(B \to K^{(*)}\mu^+\mu^-)}{BF(B \to K^{(*)}e^+e^-)}$$

•
$$R(D^{(*)}) = \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\ell\nu)}$$
 with $\ell = \mu, e$

Why study $B \rightarrow X \tau \nu$

- BaBar, Belle and LHCb measured: $R(D^{(*)}) = \frac{BR(B \rightarrow D^{(*)}\tau\nu)}{BR(B \rightarrow D^{(*)}\ell\nu)} \text{ with } \ell = \mu, e$
- many systematic uncertainties cancel (theory and experiment)
- theoretical very "clean" as it is a tree level process

•
$$\sigma(R(D^*))_{theory}pprox 2\%$$

- good statistics $BF(B
 ightarrow D^* au
 u) = 1.24\%$
- sensitive to new physics

• different channels to reconstruct for X and $\tau: \tau \to \ell \nu_{\ell} \bar{\nu}_{\tau}; \tau \to \bar{\nu}_{\tau} + hadrons$

Experimentally challenging

- depending on channel 2-3 neutrinos in the event
- large backgrounds from $B \rightarrow D^{*,**} \ell \nu$ and secondaries
- signal is flat

BaBar measurement (similar for Belle)

- fully reconstruct the tag side B meson in a hadronic decay mode (had. tag)
- require a lepton for the signal side μ or e
- require that $E_{extra} = \sum_{unmatched} E_{cal} < 0.5 GeV$
- define signal region with $q^2 > 4 GeV^2$
- no additional charged tracks in the event
- background rejection by 2 BDT:
 - reject continuum events
 - reject $B \to D^{**} \ell \nu$
- use control samples to constrain backgrounds from $B \to D^{**} \ell \nu$

(日) (四) (王) (王) (王)

• signal yields are extracted in a 2D maximum likelihood fit in $m_{miss}^2 = (p_{ee} - p_{tagB} - p_{D^{(*)}} - p_{\ell})^2$ and lepton momentum p_{ℓ}

PRL109,101802(2012)

Belle measurement semileptonic tag

- use semileptonic $B \rightarrow D^{(*)} \ell \nu$ decays to tag the other B meson:
 - large statistics: $BR(B \rightarrow D^{(*)}\ell\nu) \approx 25\%$
 - more difficult due to additional neutrino on tag side
- reconstruct events with two leptons (e, μ)
- use $\cos \theta_{BY} = \frac{2E_{beam}E_{D(*)\ell} m_B^2 M_{D(*)\ell}^2}{2|\vec{\rho}_B||\vec{\rho}_{D(*)\ell}|}$ to distinguish signal $B \to D^{(*)}\tau\nu$ and normalization $B \to D^{(*)}\ell\nu$
- select lower $\cos \theta_{BY}$ as signal

・ロン ・回 と ・ ヨ と ・ ヨ と

Current measurements of R(D) and $R(D^*)$

- ${\, \bullet \,}$ the average deviates around 4.1 σ from SM
- measurements presented at FPCP 2017 included

996

Extrapolation of Belle results

Summary

- Belle II assembly is on the finishing straight
 - beam already commissioned
 - first collisions in Feb 2018
 - data taking with full detector end of 2018
- many LFV τ -decay modes accessible by Belle II
- limits on BF for LFV τ -decays will be improved by Belle II by 1-2 orders of magnitude
- will test new physics models
- Belle II will be able to definitively confirm/reject the 4.1σ discrepancy seen in R(D^(*))

(日) (部) (注) (注) (言)

Backup

26 / 28

Machine Parameters

2013/July/29	LER	HER	unit	
E	4.000	7.007	GeV	
1	3.6	2.6	A	
Number of bunches	2,5			
Bunch Current	1.44	1.44 1.04		
Circumference	3,016	m		
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28	%	includes beam-beam
β_x^*/β_y^*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α _p	3.18x10 ⁻⁴ 4.53x10 ⁻⁴			
σδ	8.10(7.73)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	M∨	
σz	6.0(5.0)	5(4.9)	mm	():zero current
Vs	-0.0244	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.86	2.43	MeV	
T _{x,y} /Ts	43.2/21.6	58.0/29.0	msec	
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8×10 ³⁵		cm ⁻² s ⁻¹	

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

27 / 28

	$\tau \to \mu \gamma$	$\tau \to 3 \mu$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$C_{DL,R}$	0	0	0	0	-	-
$C_{SLL,RR}$	-	0	-	—	—	-
$C_{VLL,RR}$	-	0	-	_	_	-
$C_{VLR,RL}$	-	0	-	_	_	_
$C^q_{VL,R}$	-	-	\bigcirc (I = 1)	\bigcirc $(I = 0, 1)$	—	-
$C^q_{SL,R}$	-	-	\bigcirc (I = 0)	\bigcirc $(I = 0, 1)$	-	-
$C_{GL,R}$	-	-	0	0	—	_
$C^q_{AL,R}$	-	-	-	—	\bigcirc $(I = 1)$	\bigcirc (I = 0)
$C^q_{PL,R}$	-	-	-	—	\bigcirc $(I = 1)$	\bigcirc $(I=0)$
$C_{\tilde{G}L,R}$	-	-	-	-	-	0

Table 1.1: Sensitivities of LFV tau decay modes to Wilson coefficients at tree level. Here, I stands for isospin of the final states.

<□> <圖> < E> < E> E のQ@