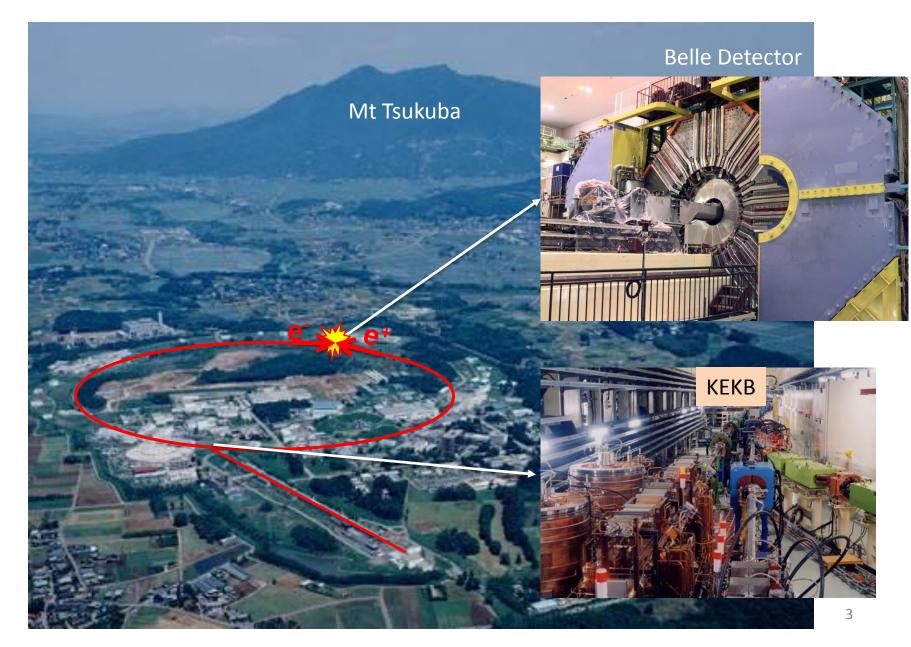
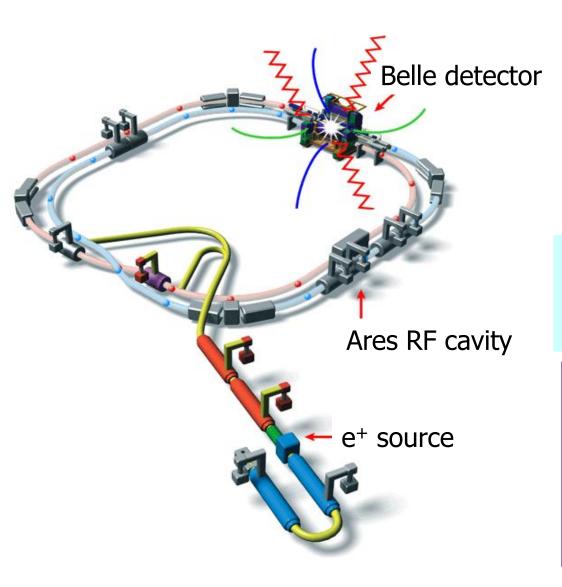
Studies of leptonic and semileptonic B decays at Belle and Belle II

Anatoly Sokolov (IHEP, Protvino)

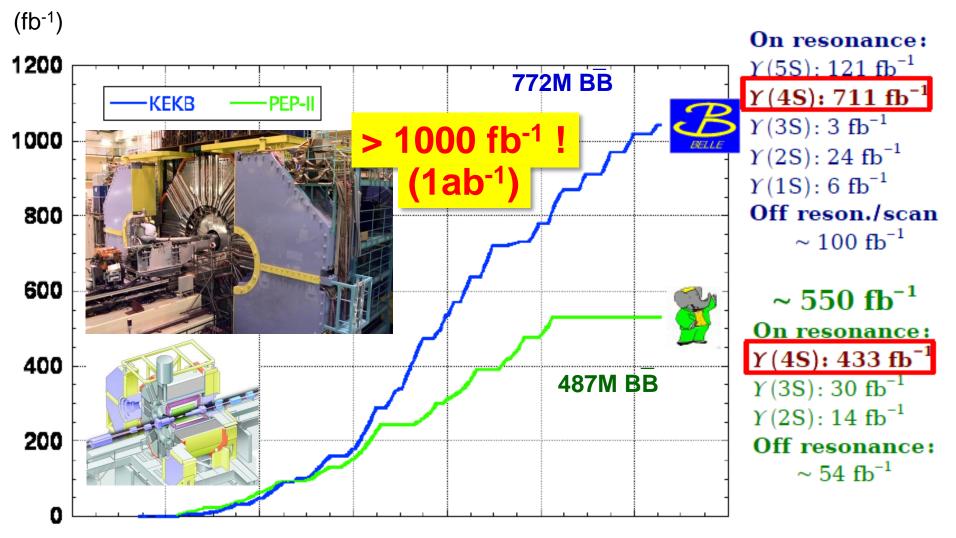



Outline

- KEKB and Belle
- □ Identification of $e^+e^- \rightarrow \Upsilon$ (4S) $\rightarrow BB$
- $\Box \quad \text{Measurements of } |V_{cb}|, |V_{ub}|$
- \square $R(D^{(*)})$ and $\mathcal{P}_{\tau}(D^{*})$
- $\square \mathcal{B}(B^+ \rightarrow \tau^+ \nu)$ measurement

KEK Laboratory, Tsukuba Japan

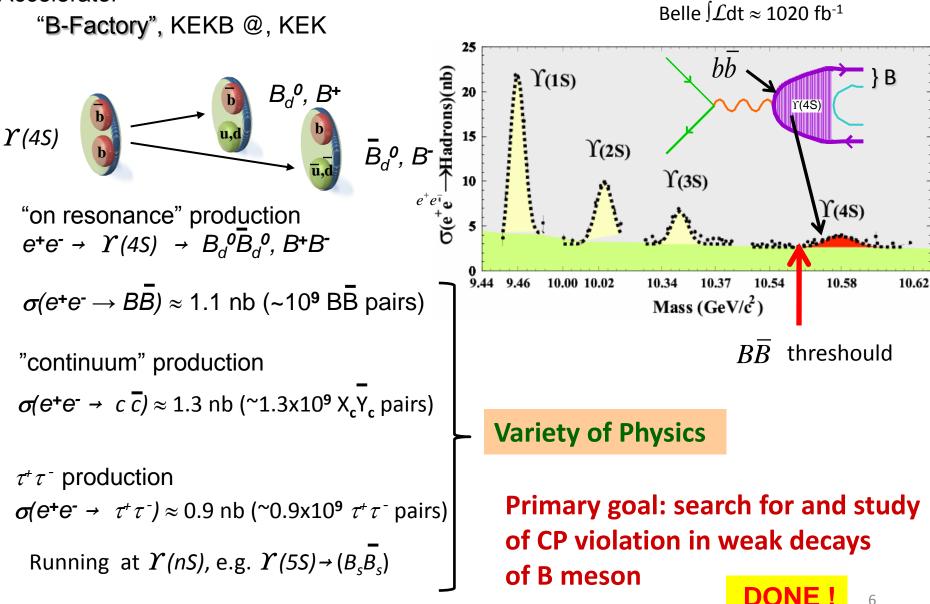
The KEKB Collider

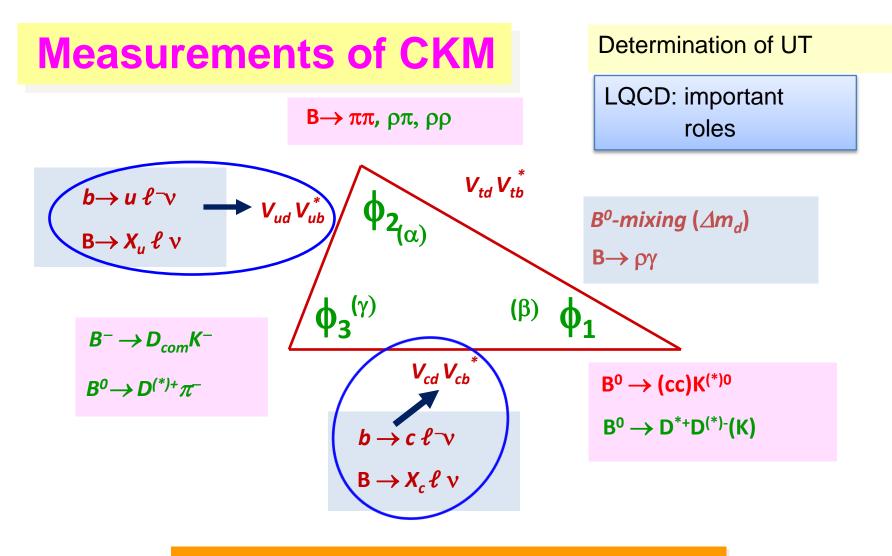

- Asymmetric energy collider (8 GeV e⁻ x 3.5 GeV e⁺)
 - √s ≈ m_{Y(4S) (Y(nS), n=1,2,3,5)}
 - Lorentz boost: βγ =0.425
- Finite angle beam crossing (22mrad)

Peak luminosity (WR!) : **2. 1 x 10³⁴ cm⁻²s⁻¹** =2x design value

First physics run on June 2, **1999** Last physics run on June 30, **2010** $L_{peak} = 2.1 \times 10^{34} / cm^2 / s$

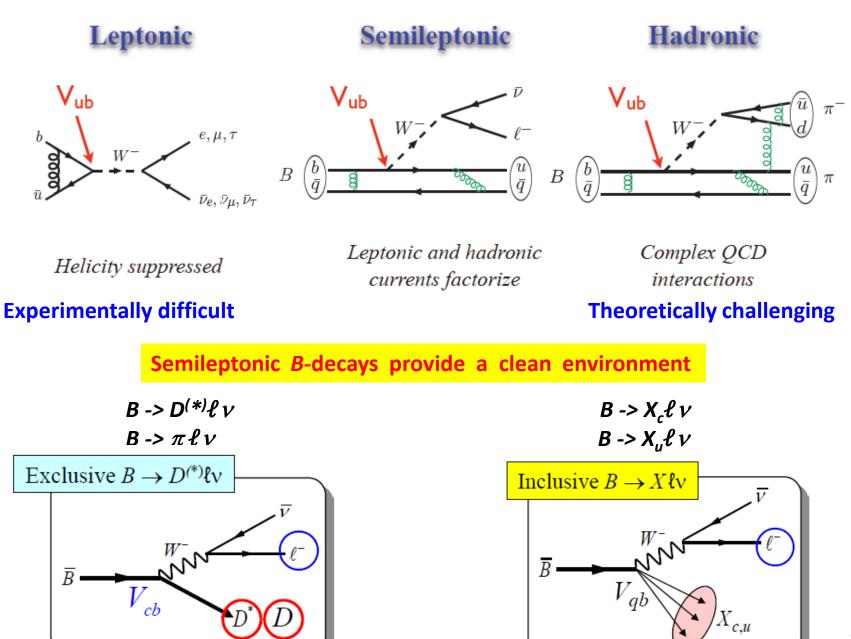
 $\int \mathcal{L} dt = 1.04 ab^{-1}$


Data at KEKB/Belle

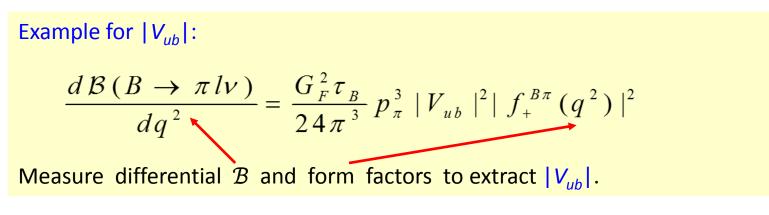

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Physics at B factory

Accelerator

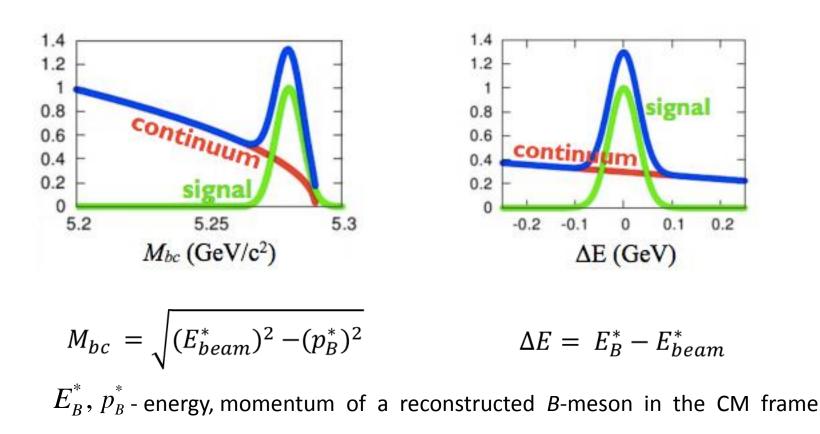


Complete Test of KM & SM

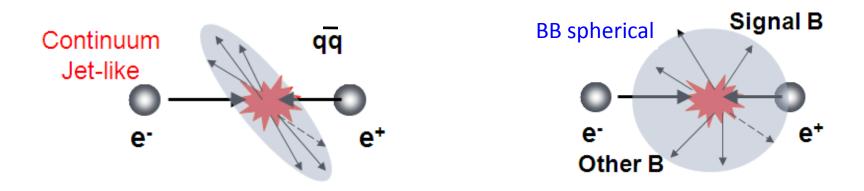

B experiments can provide all measurements !

Measurements of $|V_{ub}|$ and $|V_{cb}|$

General strategy for $|V_{ub}|$, $|V_{cb}|$ measurements

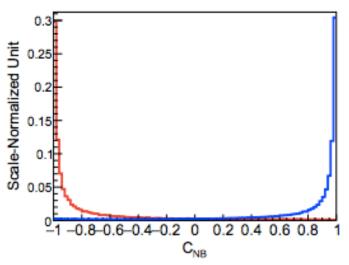

- Measure branching fraction of channel(s) involving the associated transition (semileptonic decays used in most cases).
- Extract matrix element using theory input

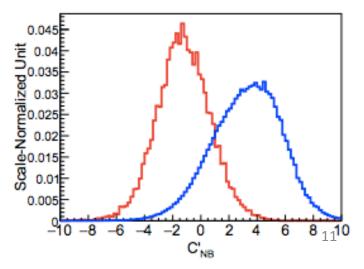
Differentiate between exclusive and inclusive measurements, both differ in sample composition and type of theoretical input.


Identification of $e^+e^- \rightarrow \Upsilon$ (4S) $\rightarrow BB$

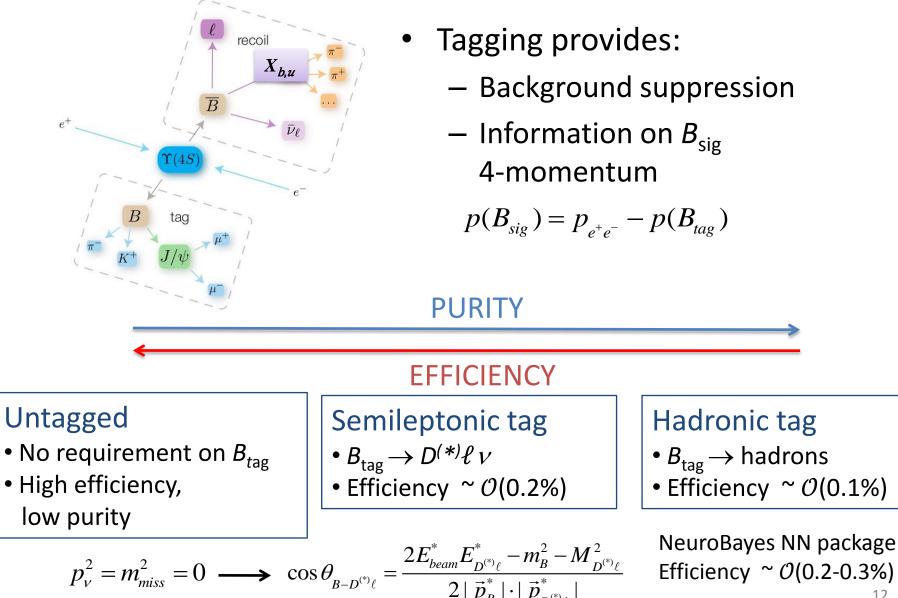
Kinematic variables are used to identify B decays:

Background suppression


The dominant source of background $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c)



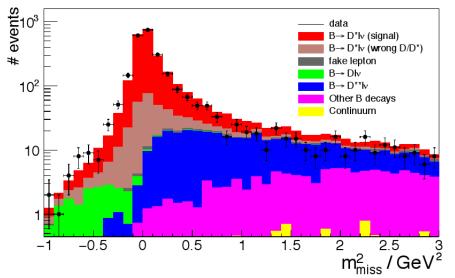
Continuum suppression: a multivariate analyzer based on



Tagging techniques for $\Upsilon(4S)$ events

$|V_{cb}|$:Exclusive decays

$B^0 \rightarrow D^{*-}\ell^+ \nu$ with hadronic tag


Belle, [arXiv:1702.01521]

Event reconstruction

- Tag side: B_{tag} reconstructed in over 1100 hadronic decay chaines, 0.2% efficiency for neutral B mesons
- Signal side: B_{sig} assembled from an identified charged lepton (electron or muon) and a D^{*+} candidate
 - D^{*+} \rightarrow D⁰ π^+ , D⁺ π^0 (98.4%)
 - $D^{0} \to K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{-}\pi^{+} (26.3\%), D^{+} \to K^{-}\pi^{+}\pi^{+} (9.4)\%$

Signal is extracted from the missing mass distribution by an unbinned maximum likelihood fit

$$p_{miss} = p_{\nu} = p_{e^+e^-} - p_{tag} - p_{D^*} - p_{\ell} \qquad m_{miss}^2 = p_{miss}^2 = p_{\nu}^2$$

l	$ u^{ m sig}$
$e + \mu$	2374 ± 53
e	1306 ± 40
μ	1066 ± 34

 $\mathcal{B} (B^0 \rightarrow D^{*-} \ell^+ \nu) = (4.95 \pm 0.11 \pm 0.22) \times 10^{-2}$

Largest syst: tag calibration ($\simeq 0.18 \times 10^{\text{-2}}$)14

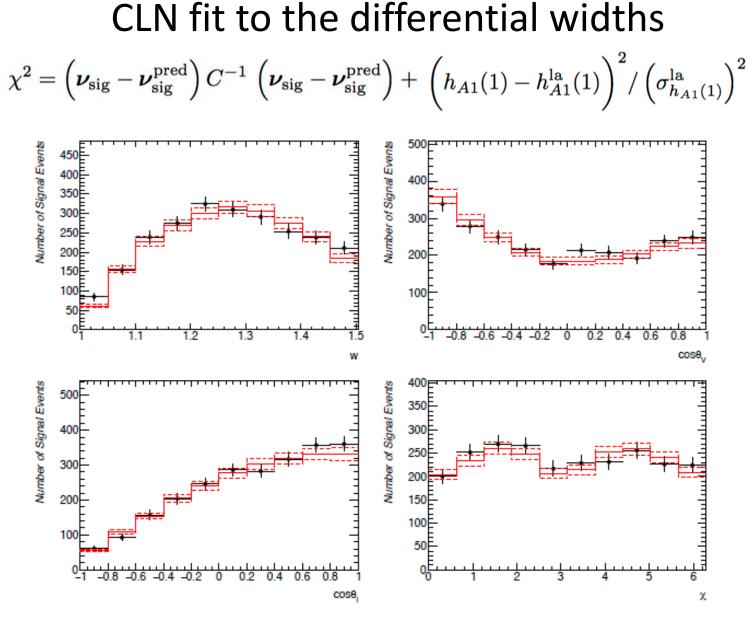
$|V_{cb}|$ determination from exclusive $B \rightarrow D^* \ell v$

Differential decay ratio with respect to the variable w in the limit of small lepton masses :

$$\frac{d\Gamma}{dw} = \frac{G_F^2 m_{D^*}^3}{48\pi^3} \left(m_B - m_{D^*}\right)^2 \sqrt{w^2 - 1} \,\chi(w) \mathcal{F}^2(w) |V_{cb}|^2$$

w: the Lorentz boost of D^* meson in the B rest frame

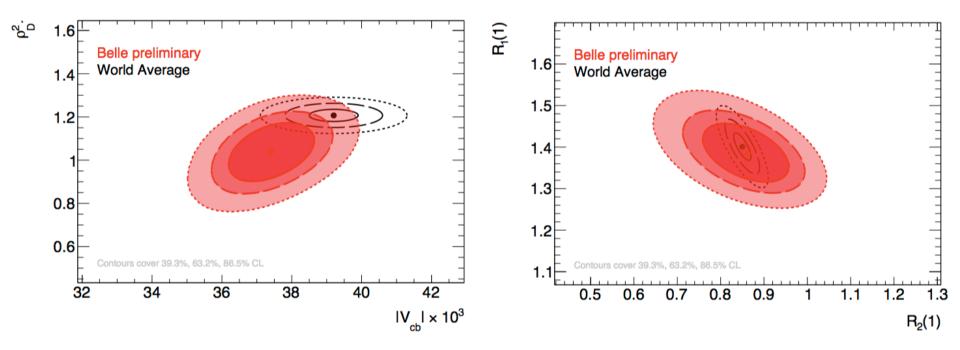
$$w = \frac{P_B \cdot P_{D^{(*)}}}{m_B m_{D^{(*)}}} = \frac{m_B^2 + m_{D^{(*)}}^2 - q^2}{2m_B m_{D^{(*)}}} \qquad (q = p_B - p_{D^*} = p_\ell + p_\nu)$$


- Parameterization of the form factors in the framework of Heavy Quark Effective Theory. Model CLN (Caprini, Lellouch, Neubert, [Nucl.Phys. B530, 153(1998)]) $\mathcal{F}(w) : \mathcal{F}(1), \rho^2, R_1(1), R_2(1)$
- The form factor normalization at w = 1 (zero-recoil) computed by Lattice QCD $\mathcal{F}(1) = 0.906 \pm 0.013$ [PRD 89, 114504(2014)]

Differential decay ratio is parametrized by 4 parameters: $|V_{cb}|$, ρ^2 , $R_1(1)$, $R_2(1)$ HQFT

	Variable	Bin	$\Delta\Gamma/\Delta x ~ [10^{-15} { m GeV}]$
Differential fit result	w	1	1.32 ± 0.11
Differential fit result		2	2.08 ± 0.15
		3	2.39 ± 0.15
		4	2.57 ± 0.16
		5	2.63 ± 0.15
D°		6	2.46 ± 0.14 2.25 ± 0.14
		7	2.25 ± 0.14 2.08 ± 0.13
θ_{i}		9	1.99 ± 0.12
		10	1.83 ± 0.12 1.83 ± 0.13
	$\cos \theta_v$	1	2.80 ± 0.19
υ μπ'		2	2.30 ± 0.14
		3	1.95 ± 0.13
		4	1.70 ± 0.11
		5	1.58 ± 0.11
		6	1.65 ± 0.11
		7	1.77 ± 0.12
		8	2.00 ± 0.14
Av /		9	2.50 ± 0.16
		10	3.19 ± 0.25
	$\cos \theta_{\ell}$	1	0.73 ± 0.07
		2	$1.18 \pm 0.09 \\ 1.64 \pm 0.11$
		4	1.64 ± 0.11 2.04 ± 0.13
V		5	2.34 ± 0.13 2.34 ± 0.14
		6	2.50 ± 0.15
 Kinematics of the decay is characterized by four variables 		7	2.54 ± 0.15
		8	2.68 ± 0.16
w, θ_{e} , θ_{ν} , χ		9	2.83 ± 0.20
		10	2.82 ± 0.24
 In the experiment yield is extracted in 4x10 bins 			
	x	1	1.86 ± 0.16
of w, $\cos \theta_e$, $\cos \theta_v$, χ		2	2.31 ± 0.15
Γ it to $\mu_{coc}(\Omega)$ coc (Ω) μ_{coc}		3	2.59 ± 0.16 2.37 ± 0.15
• Fit to w, $\cos(\theta_e)$, $\cos(\theta_v)$, χ		5	1.95 ± 0.13
		6	1.87 ± 0.15
		7	2.11 ± 0.15
		8	2.33 ± 0.15
		9	2.15 ± 0.15
		10	1 00 1 0 10

10


 1.89 ± 0.16

Points with error bars: Belle data,

red histogram: fit result, dashed histogram: $\Delta \chi^2 = 1$ contour

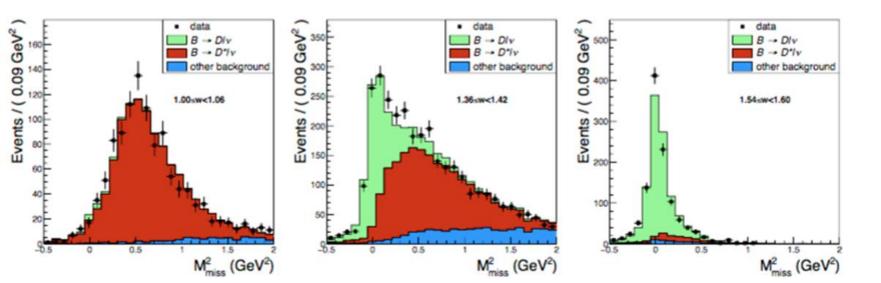
CLN fit to the differential widths (2)

Parameter	This result	World Average
$ V_{cb} \times 10^3$	37.4 ± 1.3	39.2 ± 0.7
		1.21 ± 0.03
5 F		1.40 ± 0.03
$R_{2}(1)$	0.87 ± 0.10	0.85 ± 0.02

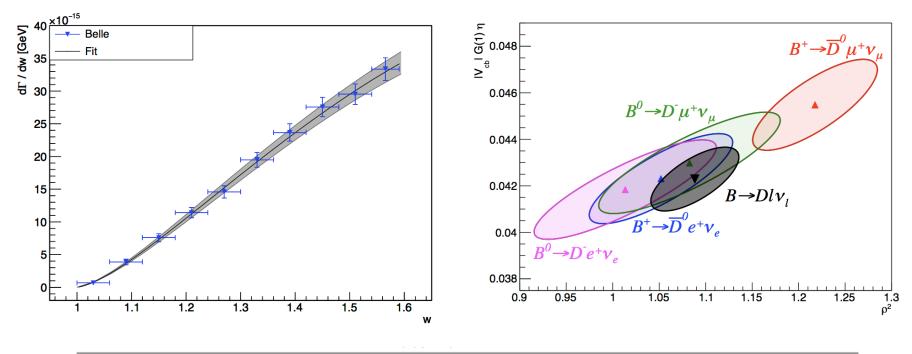
$$C = \begin{pmatrix} 1 & 0.41 & -0.20 & -0.14 \\ 0.41 & 1 & 0.19 & -0.86 \\ -0.20 & 0.19 & 1 & -0.46 \\ -0.14 & -0.86 & -0.46 & 1 \end{pmatrix}$$

Preliminary!

Exclusive $B \rightarrow D \ell v$ with hadronic tag


Event reconstruction

Belle, [Phys.Rev. D93, 032006 (2016)]


- Identical event reconstruction method
- Signal side: 15 D⁻ and 17 D⁰ modes are used
- Signal extraction from M^2_{miss} in 10 bins of w
- 16 992 ± 192 signal events
 (5 150 ± 95 B⁰ events, 11 843 ± 167 B⁺ events)

Sample	Signal yield	B [%]
$B^0 ightarrow D^- e^+ u_e$	$2848\pm72\pm17$	$2.44 \pm 0.06 \pm 0.12$
$B^0 o D^- \mu^+ u_\mu$	$2302\pm 63\pm 13$	$2.39 \pm 0.06 \pm 0.11$
$B^+ ightarrow ar{D}^0 e^+ u_e$	$6456\pm126\pm66$	$2.57 \pm 0.05 \pm 0.13$
$B^+ ightarrow ar{D}^0 \mu^+ u_\mu$	$5386 \pm 110 \pm 51$	$2.58 \pm 0.05 \pm 0.13$
$B^0 o D^- \ell^+ u_\ell$	$5150 \pm 95 \pm 29$	$2.39 \pm 0.04 \pm 0.11$
$B^+ o ar{D}^0 \ell^+ u_\ell$	$11843 \pm 167 \pm 120$	$2.54 \pm 0.04 \pm 0.13$
$B ightarrow D\ell u_\ell$	$16992 \pm 192 \pm 142$	$2.31 \pm 0.03 \pm 0.11$

20

CLN fit to the differential widths

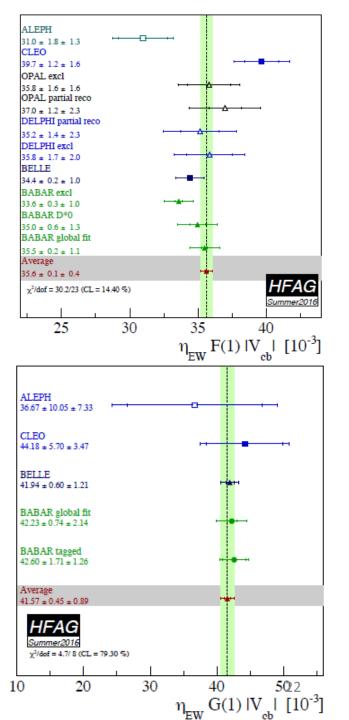
	$B^+ o ar{D}^0 e^+ u_e$	$B^+ o ar{D}^0 \mu^+ u_\mu$	$B^0 o D^- e^+ u_e$	$B^0 o D^- \mu^+ u_\mu$	$B o D\ell u_\ell$
$\eta_{ m EW} {\cal G}(1) V_{cb} [10^{-3}]$	42.31 ± 1.94	45.48 ± 1.96	41.84 ± 2.14	42.99 ± 2.18	42.29 ± 1.37
$ ho^2$	1.05 ± 0.08	1.22 ± 0.07	1.01 ± 0.10	1.08 ± 0.10	1.09 ± 0.05
Correlation	0.81	0.77	0.85	0.84	0.69
$\eta_{ m EW} V_{cb} [10^{-3}]$	40.14 ± 1.86	43.15 ± 1.89	39.69 ± 2.05	40.78 ± 2.09	40.12 ± 1.34
$\chi^2/n_{ m df}$	2.19/8	2.71/8	9.65/8	4.36/8	4.57/8
Prob.	0.97	0.95	0.29	0.82	0.80

Exclusive Average

 $B \rightarrow D^* \ell \nu$ HFAG summer 2016

 $|V_{cb}| = (38.71 \pm 0.47_{exp} \pm 0.59_{th}) \times 10^{-3}$

- HFAG 2016: $\eta_{EW} \cdot \mathcal{F}(1) \cdot |Vcb| = (35.61 \pm 0.11_{stat} \pm 0.41_{syst}) \times 10^{-3}$
- LQCD: $\mathcal{F}(1) = 0.920 \pm 0.014$
- Leading EW correction: $\eta_{ew} = 1.015 \pm 0.005$


 $B \to D \,\ell \, v$

 $|V_{cb}|$ = (39.18 ± 0.94 _{exp} ± 0.31 _{th}) × 10⁻³

- HFAG 2016: $\eta_{EW} \cdot \mathcal{G}(1) \cdot |Vcb| = (41.57 \pm 0.45_{stat} \pm 0.89_{syst}) \times 10^{-3}$
- LQCD: $G(1) = 1.0541 \pm 0.0083$
- Leading EW correction: $\eta_{ew} = 1.0066 \pm 0.0016$

PDG 2017: average of the results from $B \rightarrow D \ell v$ and $B \rightarrow D^* \ell v$

 $|V_{cb}| = (39.2 \pm 0.7) \times 10^{-3}$ (exclusive)

|V_{cb}| inclusive measurements

$|V_{cb}|$ inclusive measurements

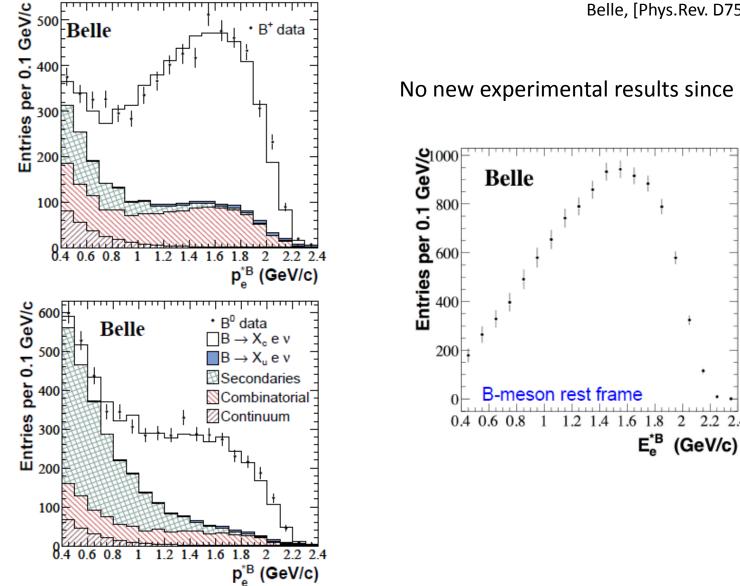
$B \rightarrow X_c ev$

At parton level, the decay rate for $b \rightarrow c \ell v \sim |V_{cb}|^2$ and can be calculated

- To relate measurements of semileptonic *B*-meson decays to $|V_{cb}|^2$ the parton-level expressions have to be corrected for the effects of non-perturbative effects.
- Operator Product Expansions (OPE)/Heavy-Quark-Expansions (HQE) successful tool to incorporate perturbative and nonperturbative QCD corrections.

The OPE/HQE parameters and $|V_{cb}|^2$ can be extracted from

the moments of the lepton spectrum (<E_lⁿ>) $\langle E_l^n \rangle = \frac{1}{\Gamma_{E_l > E_{cut}}} \int_{E_l > E_{cut}} E_l^n \frac{d\Gamma}{dE_l} dE_l$


or the moments of the X_c invariant mass squared spectrum ($< m_x^{2n} >$)

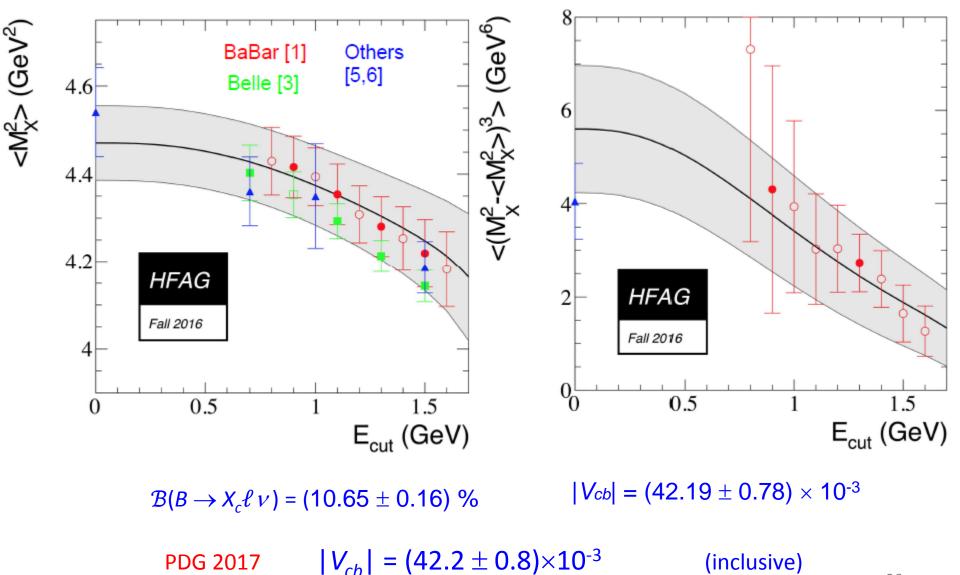
$$\left\langle m_X^{2n} \right\rangle = \frac{1}{\Gamma_{E_l > E_{cut}}} \int_{E_l > E_{cut}} m_X^{2n} \frac{d\Gamma}{dm_X^2} dm_X^2$$

Moments are measured with incremental cuts on the lepton momentum

Lepton spectrum measurements

Inclusive semileptonic decays $B \rightarrow X_c ev$ (+ hadronic tag)

Belle, [Phys.Rev. D75, 032001 (2007)]


2.2 2.4

2

No new experimental results since 2010

Example of the X_c invariant mass moments

grey band: fit error (including theory errors)

26

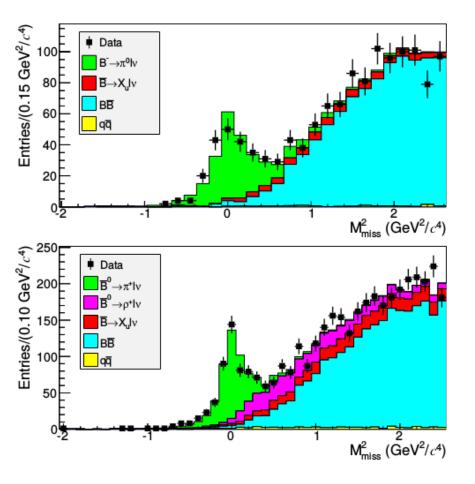
$|V_{ub}|$

Measuring $|V_{ub}|$

Exclusive measurement

- Charmless hadronic final states
- $B \rightarrow \pi \ell v$ most precise, but only 7% of all $B \rightarrow X_u \ell v$
- Others include $X_u = \rho$, ω , η , multi-particle states, ...
- Needs LQCD or Light Cone Sum Rules (LCSR) as theory input

Pseudoscalar

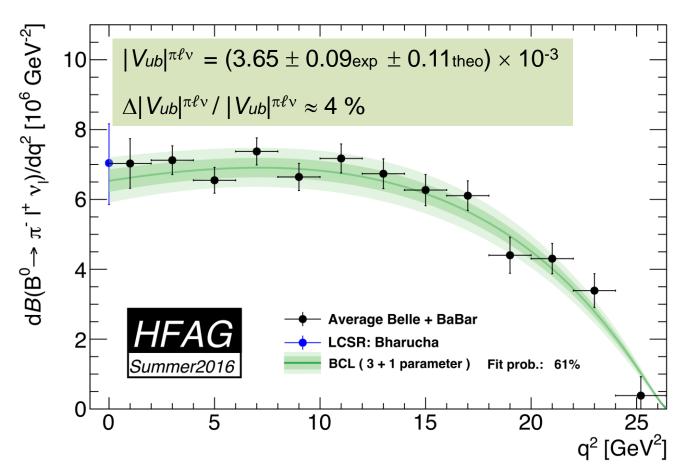

$$\frac{d\mathcal{B}(B \to \pi l\nu)}{dq^2} = \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+^{B\pi}(q^2)|^2$$

Vector (helicity basis)

$$\frac{d\mathcal{B}(B \to V l \nu)}{dq^2} = \frac{G_F^2 p_V q^2 \tau_B}{96\pi^3 m_B^2} |V_{ub}|^2 \left[|H_0(q^2)|^2 + |H_+(q^2)|^2 + |H_-(q^2)|^2 \right]$$

Experimental measurement of the branching fraction and theoretical input on form factors needed to determine $|V_{ub}|$

$B \rightarrow \pi \ell^+ \nu$ tagged at Belle

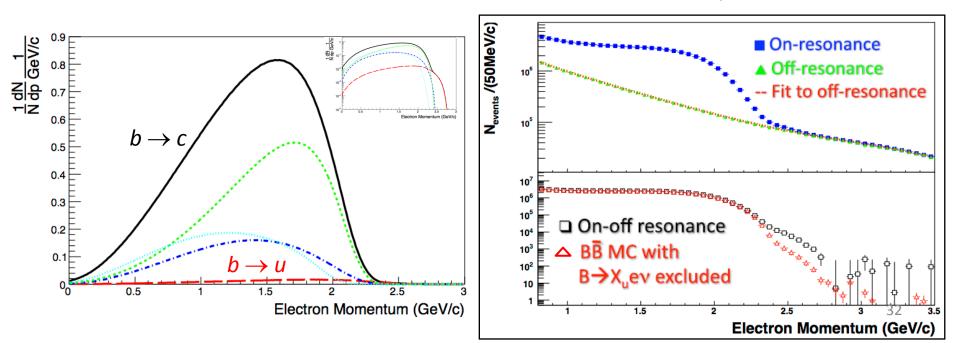


Belle, [Phys.Rev. D88, 032005 (2013)]

- Data sample: 711 fb⁻¹
- Signal candidates $N_{B0} \approx 500 \pm 30$ $N_{B+} \approx 200 \pm 20$
- $d\mathcal{B}/dq^2$ spectrum in 13 (7) bins for $\pi^-(\pi^0)$

B⁺, *B*⁰ combined result: $\mathcal{B}(B \rightarrow \pi \ell^+ \nu) = (1.49 \pm 0.08_{\text{stat}} \pm 0.07_{\text{sys}}) \times 10^{-4}$

 $B \to \pi \ell \nu$

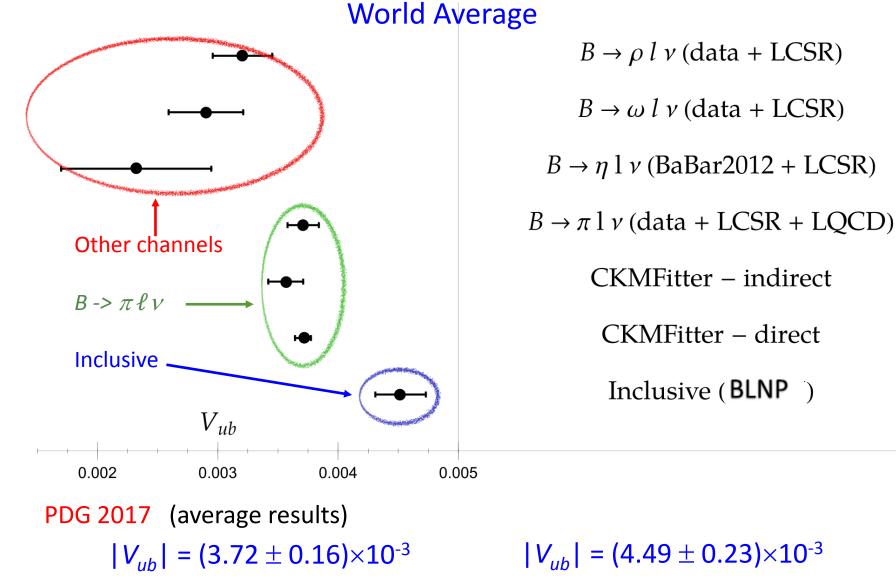

Fit, data averaging: [F. Bernlochner, S. Duell, J. Dingfelder] LQCD averaging: [FLAG-3 review (arXiv:1607.00299)] LQCD: [Fermilab/MILC, Phys.Rev. D92 (2015) no.1, 014024] LQCD: [RBC/UKQCD, Phys.Rev. D91 (2015) no.7, 074510] LCSR: [A. Bharucha, JHEP 1205 (2012) 092] Optimal $|V_{ub}|$ extraction with simultaneous fit to: averaged data (full q^2) + averaged lattice + LCSR with model independent FF parametrization

30

|*V_{ub}*| - inclusive measurements

Electron spectrum from *B* decays at $\Upsilon(4S)$

- $B \rightarrow X_c ev$ decays dominate ($\Gamma(B \rightarrow X_c ev) \approx 50 \Gamma(B \rightarrow X_u ev)$); $B \rightarrow X_u ev$ contribute a sizeable fraction only above the $b \rightarrow c$ kinematic endpoint, $E_e > 2.3 \text{ GeV}$
- Large contribution from e⁺e⁻ → c c → eX decays; dedicated sample of data collected below BB threshold (off---resonance) needed
- Additional contributions at lower energy from secondary processes $b \rightarrow c \rightarrow e$ and misidentified hadrons
 - Statistical uncertainties on BB spectrum dominated by continuum subtraction
 - Region above 2.3 GeV shows clear contribution from $B \rightarrow X_u ev$ decays

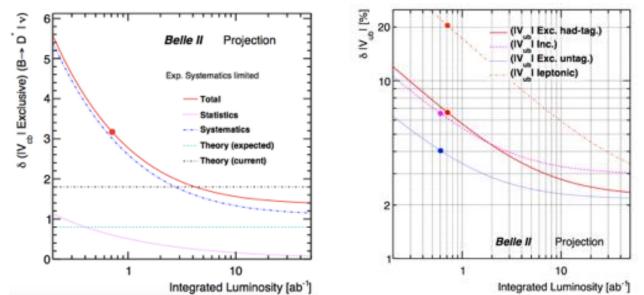

Theoretical models and results

- The OPE calculation is only valid for partial rates that include large portions of the available phase space
 - near the endpoint non-perturbative shape functions (SF) are needed
 - different prescriptions different "models"
- **DN** DeFazio, and Neubert, JHEP 9906, 017 (1999)
- BLNP Bosh, Lange, Neubert, Paz, Nucl. Phys. B 699, 335 (2004)
- **GGOU** Gambino, Giordano, Ossola, Uraltsev, JHEP 908 10, 058 (2007)
- **DGE** Andersen, Gardi, JHEP 0601, 097 (2006)

PDG 2017 |*Vub*| (in units of 10⁻³) from inclusive $B \rightarrow X_u \ell v$ measurements

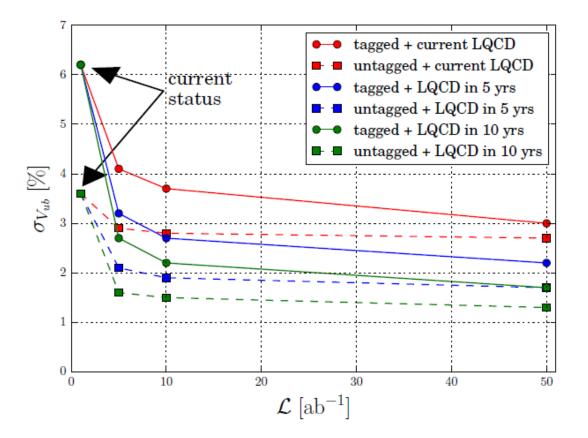
	BLNP	GGOU	DGE
HFAG average	4.45±0.16 ⁺²¹ -22	4.51±0.16 ⁺¹² ₋₁₅	4.52±0.16 ⁺¹⁵ ₋₁₆

Overview of various $|V_{ub}|$ values



$|V_{cb}|$, $|V_{ub}|$ measurements summary

- $|V_{cb}|$ and $|V_{ub}|$ are measured with different methods
- ✓ Inclusive $B \rightarrow X_c \ell v$, $B \rightarrow X_u \ell v$, Hadronic tag, Semileptonic tag, Untagged
- $\checkmark \quad \text{Exclusive } B \to D^{(*)} \ell v, \ B \to \pi \ell v$
- Inclusive-Exclusive tension in both $|V_{cb}|$ and $|V_{ub}|$ still exist


N	δV/V	
/Vub/ Inc.	4.49 ± 0.23	5%
$2.8\sigma \checkmark V_{ub} \text{ Inc.}$	3.72 ± 0.16	4%
	42.2 ± 0.8	2%
$2.9\sigma < V_{cb} \text{ Inc.}$ $ V_{cb} \text{ Exc}$	39.2 ± 0.7	2%

• Belle II will provide more precise measurements (B2TiP)

Belle II: $|V_{ub}|$ from $B \rightarrow \pi \ell v$

B2TiP Toy MC studies based on Belle II MC, LQCD forecasts estimated for 5, 10 and 50 ab⁻¹

 $\delta |V_{ub}|$ estimates for 5, 10, 50 ab⁻¹ Tagged: 3.2, 2.7, 1.7 % Untagged: 2.1, 1.9, 1.3 %

 $B \rightarrow D^{(*)} \tau \nu$

New physics searches in $B \rightarrow D^{(*)}\tau \nu$ decay

SM extensions - enhanced coupling to the third generation

New physics could change \mathcal{B} and τ polarization (\mathcal{P}_{τ})

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \qquad (\ell = e, \mu)$$

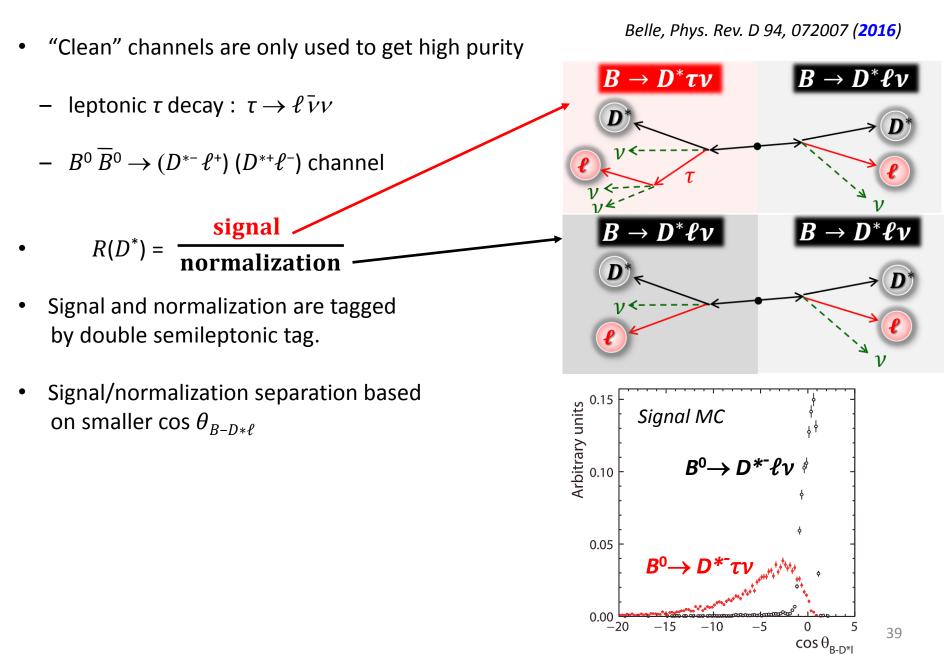
Uncertainties are largely cancelled: V_{cb} , form factors, efficiency etc.

SM:

- R(D) = 0.300 ± 0.008
 Fermilab Lattice and MILC Collaborations, Phys. Rev. D 92, 034506 (2015)
- $R(D^*) = 0.252 \pm 0.003$ S. Fajfer, et al., Phys. Rev. D 85, 094025 (2012)
 - Belle, BaBar, and LHCb measured
- $\mathcal{P}_{\tau}(D^*) = -0.497 \pm 0.013$ M. Tanaka, R. Watanabe, PRD 87, 034028 (2013)
 - Belle measured

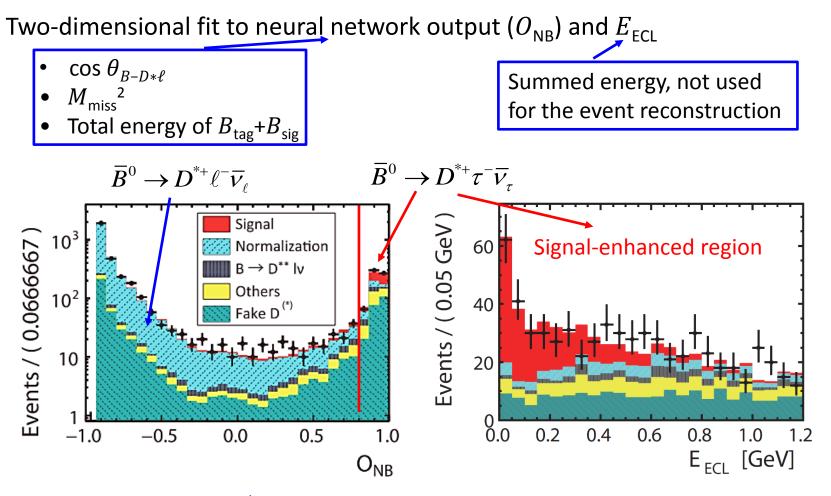
Belle: *Phys. Rev. D 92, 072014* (2015) hadronic tag, leptonic τ decay : $\tau \rightarrow \ell \nu \nu$

B


B

Charged Higgs

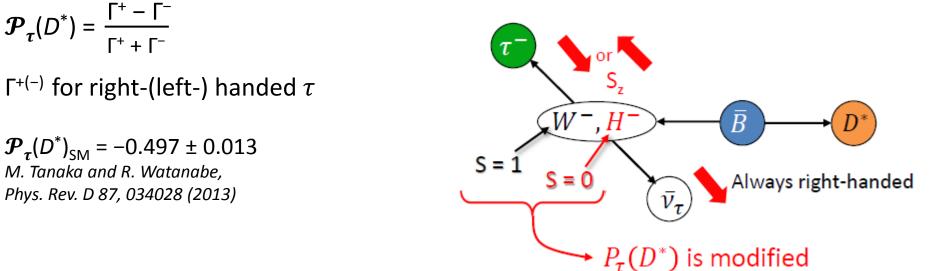
Leptoquark(LQ)


- $R(D) = 0.375 \pm 0.064(\text{stat.}) \pm 0.026(\text{syst.})$
- $R(D^*) = 0.293 \pm 0.038(\text{stat.}) \pm 0.015(\text{syst.})$

R(D*) with semileptonic tag

Signal extraction

Belle, Phys. Rev. D 94, 072007 (2016)

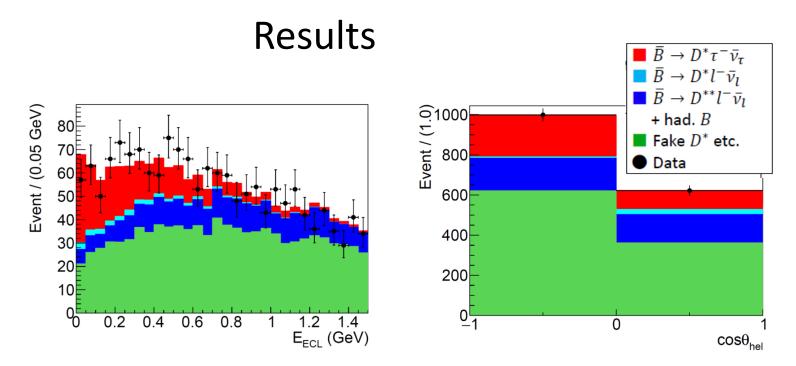


 $R(D^*) = 0.302 \pm 0.030(\text{stat.}) \pm 0.011(\text{syst.})$

- ✓ 13.8 σ significance including syst. error.
- ✓ Compatibility with the SM is 1.6σ
- ✓ Consistent with other measurements

$R(D^*)$ and $\mathcal{P}_{\tau}(D^*)$ with hadronic τ decays

Belle, Phys. Rev. Lett. 118, 211801 (2017)



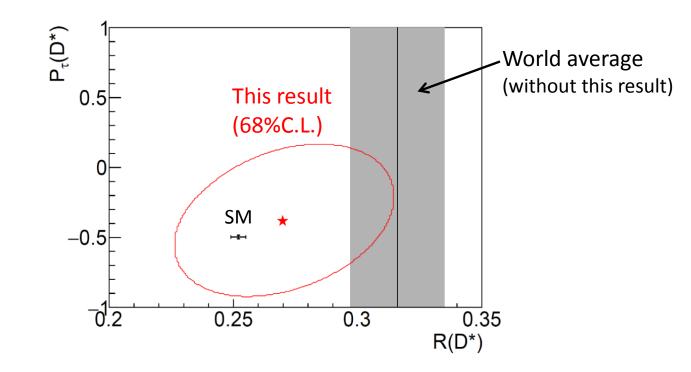
- τ polarization is a variable sensitive to NP
 - It can be measured using two-body decays of τ

Target of this analysis

- First measurement of $\mathcal{P}_{\tau}(D^*)$ using $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\rho^- \nu_{\tau}$
- New measurement of *R*(*D**)
 - Independent study of previous measurements using $\tau \rightarrow \ell \bar{\nu} v$

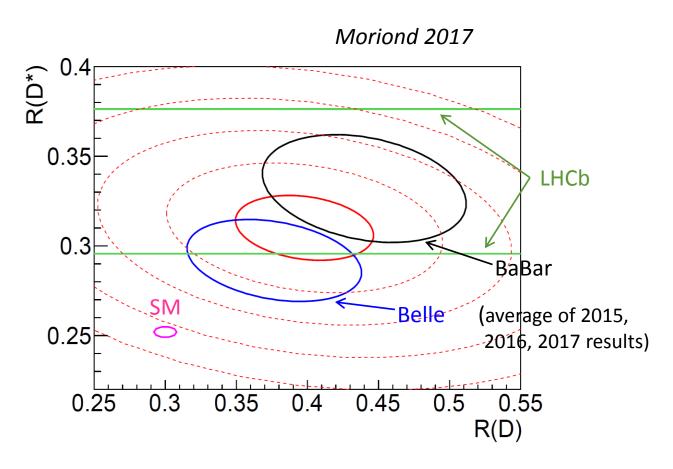
Different final state - different background

Signal significance of about 7σ

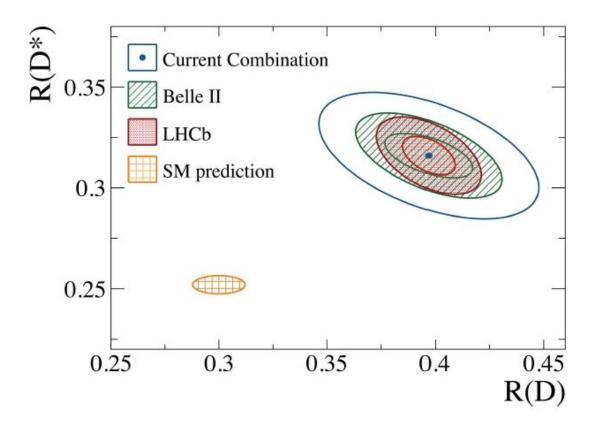

- First observation of the $B \rightarrow D^* \tau v$ signal using only hadronic τ decays

 $R(D^*) = 0.270 \pm 0.035(\text{stat.}) \stackrel{+0.028}{_{-0.025}}(\text{syst.})$

 $\mathcal{P}_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat.}) \stackrel{+0.21}{_{-0.16}}(\text{syst.})$


Compatibility with the SM within 0.4 σ

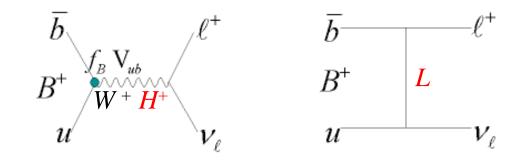
Results


- Result is consistent with the SM within 0.4 σ
- Excludes $\mathcal{P}_{\tau}(D^*) > +0.5$ at 90% C.L. \longrightarrow *First measurement of* $\mathcal{P}_{\tau}(D^*)$
- First $R(D^*)$ measurement only with hadronic τ decays
 - Precision of 16%; comparable to the previous measurements (9-14%)

Status of $R(D^{(*)})$

- $\sim 4\sigma$ discrepancy from the SM remains
 - All the experiments show the larger $R(D^{(*)})$ than the SM
- More precise measurements at Belle II and LHCb are essential

Future



	Belle ~1/ab	Belle II 5/ab	Belle II 50/ab
R(D)	~15.8 %	5.6 %	3.2 %
$R(D^*)$	~6.9 %	3.9 %	2.2 %

 $B^+ \rightarrow \tau^+ \nu_{\tau}$

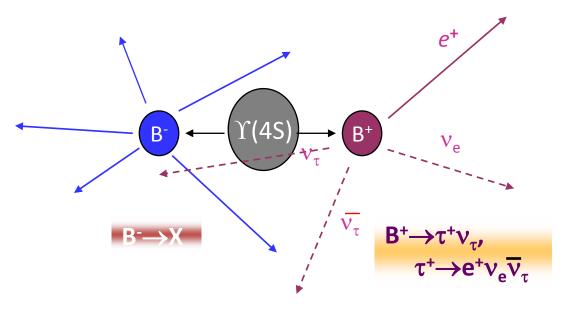
 $B^+ \rightarrow \tau^+ \nu_{\tau}$

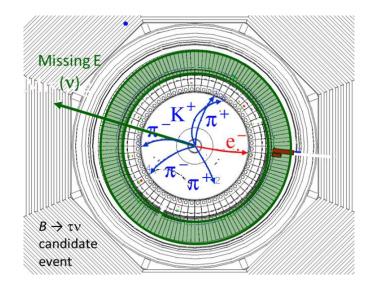
(Decays with Large Missing Energy)

Sensitivity to NP

SM:

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

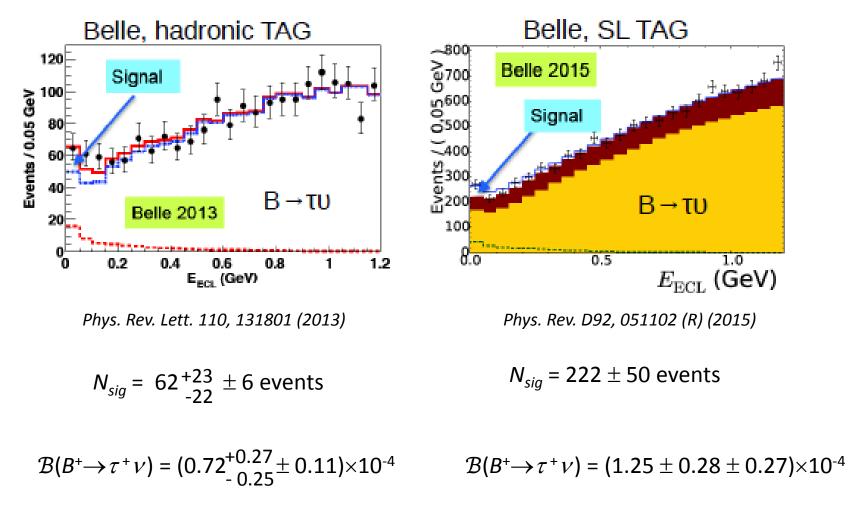

NP effects (2-Higgs doublet model (type II))


$$\mathcal{B}(B^+ \to \tau^+ \nu) = \mathcal{B}_{SM}(B^+ \to \tau^+ \nu) \times r_H$$

$$r_{H} = [1 - (m_{B}^{2} / m_{H}^{2}) \cdot tan^{2}\beta]^{2}$$

- very clean place to measure $f_B \cdot |V_{ub}|$ and/or search for new physics (e.g. H^+ , LQ)
- helicity-suppressed: $\mathcal{B} \propto m_{\ell}^2$ $\mathcal{B}(B^+ \rightarrow e^+ v) \ll \mathcal{B}(B^+ \rightarrow \mu^+ v) \ll \mathcal{B}(B^+ \rightarrow \tau^+ v)$ $\sim 10^{-11} \sim 10^{-6} \sim 10^{-4}$
- experimental features $B^+ \rightarrow \tau^+ \nu_{\tau}$ large BF, but multiple ν

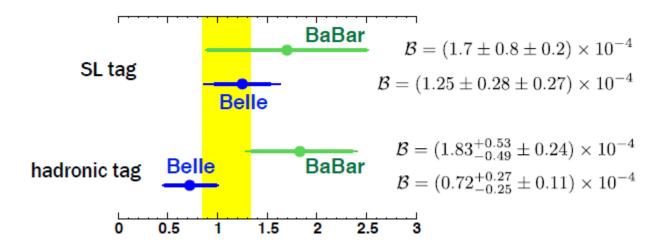
$B \rightarrow \tau \nu$: Experimental Challenge



Always \ge 2 neutrinos appear in B $\rightarrow \tau v$ decay

Signature : 1 track +invisible

Experimental Challenge !


Belle experimental results

 3σ significance

4.6 σ significance

$B^+ \rightarrow \tau^+ \nu$ summary

Belle combined: $\mathcal{B}(B^+ \to \tau^+ \nu) = (0.91 \pm 0.22) \times 10^{-4}$ BaBar combined: $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.79 \pm 0.48) \times 10^{-4}$ World average: $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.09 \pm 0.24) \times 10^{-4}$

- Belle vs. BaBar consistent within $\sim 1.7\sigma$
- The average is consistent with SM $(\mathcal{B}(B^+ \rightarrow \tau^+ \nu)_{SM} = (0.83 \pm 0.08) \times 10^{-4})$

Prospect at Belle II

B2TiP

Semileptonic / Leptonic decays with τ final states:

Observable	Belle / LHCb Measurements	SM Prediction	Belle II 5/ab	Belle II 50/ab	LHCb 10/fb	LHCb 22/fb
R(D)	0.397 +/- 0.040 +/- 0.028	0.300 +/- 0.008	5.6%	3.2%	4%	2%
R(D*)	0.316 +/- 0.016 +/- 0.010	0.252 +- 0.003	3.9%	2.2%	4%	2%
R(<i>π</i>)	1.05 +/- 0.51	0.641 +/- 0.016	19%	8%	-	-
$BF(B\to\tau\nu)$	(1.06+/- 0.19) x 10 ⁻⁴	(0.83 +/- 0.08) x 10 ⁻⁴	9%	4%	-	-

Summary

- $|V_{cb}|$ and $|V_{ub}|$ are measured at Belle with different methods
- ✓ Inclusive $B \to X_c \ell v$, $B \to X_u \ell v$, Hadronic tag, Semileptonic tag, Untagged
- $\checkmark \quad \text{Exclusive } B \to D^{(*)} \ell \, v \,, \, B \to \pi \ell \, v$
- Inclusive-Exclusive tension in both $|V_{cb}|$ and $|V_{ub}|$ still exist (~3 σ)
- ~4 σ discrepancy from the SM remains for the world average of $R(D^{(*)})$
- ✓ All the experiments show the larger $R(D^{(*)})$ than the SM
- The world average of $\mathcal{B}(B^+ \rightarrow \tau^+ \nu)$ is consistent with the SM
- The precision of these measurements will be improved by the Belle II experiment (factor ~2-3) (NP ?...)