15th Conference on Flavor Physics and CP violation

9 June 2017, Prague

Belle II physics prospects

Elisa Guido

INFN Torino (on behalf of the BELLE II Collaboration)

The B-factories legacy

 (fb^{-1})

- The 1st generation of B-factories

 (BABAR+Belle) collected, in about a decade, more than 1.5 ab⁻¹ of data, leaving a solid heritage to the future experiments:
 - discovery of CP violation, and confirmation of the CKM description of flavor physics
 - discovery of several new particles
 - precision tests of the SM → some interesting tensions

- <u>Belle II</u> at the SuperKEKB factory will collect <u>50 ab⁻¹ by 2024</u>
- Its purpose is:
 - to <u>search for NP</u> through precision study of rare and suppressed processes, confirming current anomalies and understanding their correlations
 - to further reveal the <u>nature of QCD</u> in describing matter

 $> 1 ab^{-1}$

The intensity frontier

- Belle II will be an <u>intensity frontier</u> experiment
- Complementary to the <u>energy frontier</u> (LHC, direct searches)
 - if NP was detected at LHC, Belle II could provide determination of the flavor structure and weak phases of NP
 - if not, indirect searches could be the right path
- Advantages:

- a full solid angle detector, within a clean environment, and with a constrained kinematics
- <u>missing-energy decays</u> can be studied $(B \rightarrow \tau \nu, B \rightarrow D^{(*)} \tau \nu)$
- <u>inclusive measurements</u> can be performed ($b \rightarrow s \chi, b \rightarrow s \ell \ell$)
- efficient reconstruction of <u>neutrals</u> (π^0 , η , η' , K_L^0)

Highlights of the physics program

- The expected available physics program is wide:
 - **B physics** [~1.1 x 10⁹ BB pairs / ab⁻¹]: neutral B mixing, penguin B decays, semileptonic B decays
 - charm physics [~1.3 x 10⁹ cc pairs / ab⁻¹]: mixing, CPV in charm, rare decays
 - τ -physics [~0.9 x 10⁹ $\tau^+\tau^-$ pairs / ab⁻¹]: LFV beyond SM
 - Initial State Radiation: e⁺e⁻→light hadrons cross section
 - bottomonium spectroscopy and search for exotic states
 - direct searches of NP at the MeV-GeV scale (dark sector)
- A (not exhaustive) selection of topics will be presented in this talk
- Many details are available in the <u>B2TiP report</u>: detector, simulation, software, analysis tools, physics program (<u>https://confluence.desy.de/display/BI/B2TiP+ReportStatus</u>), to be published in 2017

Semileptonic B decays

- Used at Belle+BABAR to precisely determine the CKM parameters $|V_{ub}|$ and $|V_{cb}|$
- At the end of the B-factories era, tension between inclusive and exclusive measurements

- Determine new techniques to understand this tension, exploiting a larger dataset
- Improvement of theoretical predictions is crucial
- LHCb can also contribute (|Vub| from barionic decays, Nature Phys.11 (2015) 743)
- Belle II will have access to more processes

 $B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

• (Semi)leptonic modes with a τ lepton are also very sensitive to NP, in the form of a charged Higgs contribution

$B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

- (Semi)leptonic modes with a τ lepton are also very sensitive to NP, in the form of a charged Higgs contribution
- 4σ deviation from the SM observed in $B \rightarrow D^{(*)}\tau v$
 - Very clean theoretical predictions:

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to \bar{D}^{(*)}\tau^+\nu_{\tau})}{\Gamma(B \to \bar{D}^{(*)}\ell^+\nu_{\ell})}$$

R

 $R(D) = 0.300 \pm 0.008, 0.299 \pm 0.011$ [HPQCD 2015, FNAL/MILC 2015]

 $R(D^*) = 0.252 \pm 0.003$ [S. Fajfer et al. 2012]

- With 50 ab⁻¹ the experimental sensitivity will be comparable to the current theoretical precision
- interest in D^{*} and *τ* polarizations:
 - τ polarization already measured by Belle [arXiv:1612.00529, accepted by PRL]

 $P(\tau) = -0.38 \pm 0.51^{+0.21}_{-0.16}$

 $B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

- (Semi)leptonic modes with a τ lepton are also very sensitive to NP, in the form of a charged Higgs contribution
- Current world average (hadronic and semileptonic tags) BF = $(1.09 \pm 0.24) 10^{-4}$
- No deviation from the SM observed in $B \rightarrow \tau v$ so far

- <u>B</u> \rightarrow K $\ell\ell$, for lepton universality: $\mathcal{R}_K = \frac{\mathcal{B}(B \rightarrow K \mu \mu)}{\mathcal{B}(B \rightarrow K e e)} \sim 1$
- LHCb reported a <u>2.6σ deviation</u> from SM expectation
- b \rightarrow see modes difficult at LHCb at high q²

- <u>B</u> \rightarrow K $\ell\ell$, for lepton universality: $\mathcal{R}_K = \frac{\mathcal{B}(B \rightarrow K\mu\mu)}{\mathcal{B}(B \rightarrow Kee)} \sim 1$
- LHCb reported a <u>2.6σ deviation</u> from SM expectation
- b \rightarrow see modes difficult at LHCb at high q²
- At Belle II the same detection efficiency is expected for electrons and muons, at both low and high q²

- <u>B</u> \rightarrow K $\ell\ell$, for lepton universality: $\mathcal{R}_K = \frac{\mathcal{B}(B \rightarrow K\mu\mu)}{\mathcal{B}(B \rightarrow Kee)} \sim 1$
- LHCb reported a 2.6σ deviation from SM expectation
- b \rightarrow see modes difficult at LHCb at high q²
- At Belle II the same detection efficiency is expected for electrons and muons, at both low and high q²

-BaBar -Belle

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 & \text{GeV}^2/c^4 ,\\ 0.69 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 & \text{GeV}^2/c^4 . \end{cases}$$

-LHCb

<u>2.1-2.5σ deviation</u> from SM expectation, depending on the q² region and prediction considered

- <u>B</u> \rightarrow K $\ell\ell$, for lepton universality: $\mathcal{R}_K = \frac{\mathcal{B}(B \rightarrow K \mu \mu)}{\mathcal{B}(B \rightarrow K e e)} \sim 1$
- LHCb reported a 2.6σ deviation from SM expectation
- b \rightarrow see modes difficult at LHCb at high q²
- At Belle II the same detection efficiency is expected for electrons and muons, at both low and high q²

- <u>2.6 σ tension</u> with the SM also in the angular distribution of <u>B \rightarrow K^{*}\ell\ell</u>
- Can these anomalies be fit together? NP contributions to the Wilson coefficients
- Confirmation of these measurements by Belle II will be important

Time-dependent CPV

- Among the benchmark measurements at the B-factories
- Access to the weak phase of the CKM matrix, through <u>interference between</u> <u>mixing and decay</u>
- Precise determination of sin2β still important at Belle II:
 - check consistency of unitarity triangle
 - search for new CP violating phases in b→s by testing the SM prediction:

 $\sin 2\beta (b \to sq\bar{q}) = \sin 2\beta (J/\psi K)$

- Involve <u>all the aspects of the detector</u>:
 - tracking
 - neutrals reconstruction
 - vertexing
 - PID
 - flavor tagging
 - background rejection

- <u>Significant improvements</u> expected at Belle II:
 - improved ∆t resolution (30% wrt Belle)
 - enhanced flavor tagging efficiency

Time-dependent CPV

Belle result on full dataset from B→ccK⁰
 (PRL 108 (2012), 171802):

 $S = (0.667 \pm 0.023 \pm 0.012)$ $A = (0.006 \pm 0.016 \pm 0.012)$

- Several golden modes to search for additional CPviolating phases, given by particles beyond the SM entering the loop
 - В→**ф**К_S
 - $B \rightarrow \eta' K_S$
 - $B \rightarrow K_S K_S K_S$
- Theoretically clean (~2%)
- Current measurements consistent with $J/\psi K_S$ -
- <u>Expected errors at Belle II at the same level of the</u> <u>theoretical ones</u>
- Mode
 50 ab^{-1}
 $\sigma(S) \quad \sigma(\mathcal{A})$
 $\eta' K^0$ 0.011 $\quad 0.009$
 ϕK_S^0 0.018 $\quad 0.023$
 $K_S K_S K_S$ 0.033 $\quad 0.021$

Belle II expected sensitivity on 50 ab⁻¹:
 dominated by systematic uncertainties!

$$S = (x.xxxx \pm 0.0027 \pm 0.0044)$$
$$A = (x.xxxx \pm 0.0033 \pm 0.0037)$$

Charm physics

- B-factories discovered D⁰-D⁰ mixing
- <u>To-do-list for Belle II</u>:
 - improve the measurements of mixing parameters
 - look for direct and indirect CPV
 - search for rare decays
 - ...
- Advantages with respect to LHCb:
 - semileptonic decays (neutrinos in the final states)

- FCNC mode D⁰→yy expected BF ~ 10⁻⁸
- Belle: BF < 8.5 10⁻⁷ @90% CL
- Belle II sensitivity on 50 ab⁻¹: BF ~10⁻⁷ - 10⁻⁸

- Substantial improvements with respect to the B-factories:
 - proper time resolution
 - flavor tagging: new method based on the study of the <u>rest of event</u> are being developed

LFV in τ decays

- Forbidden in the SM, while possibly enhanced in NP models up to O(10⁻⁸)
- A field where LHCb competition is possible in few channels $(\tau \rightarrow \mu \mu \mu)$
- Belle II will uniquely access final states with neutrals (χ , π^0 , η , η')
- Control of beam backgrounds will be crucial
- <u>1-2 orders of</u> <u>magnitude</u> <u>improvement</u> from B-factories to Belle II

Bottomonium physics

- The B-factories made great contributions to the knowledge of charmonium and bottomonium
- Several unexpected quarkonium-like states (from X(3872), to Z_b(10610,10650))
- Bottomonium physics at Belle II can achieve important results, through some golden modes based on a possibly **unique data sample** to be collected at the **Y(6S)** energy
- $\Upsilon(6S) \rightarrow \pi Z_b, Z_b \rightarrow \pi h_b(nP)$
 - not sufficienct statistics at Belle to clearly separate the Z_b contribution
 - possibility for a data acquisition at the Υ(6S) energy during Phase 2 (2018)
 - according to MC studies, separation is possible already with 10 fb⁻¹ of data

12

Bottomonium physics

- The B-factories made great contributions to the knowledge of charmonium and bottomonium
- Several unexpected quarkonium-like states (from X(3872), to $Z_b(10610, 10650)$)
- Bottomonium physics at Belle II can achieve important results, through some golden modes based on a possibly **unique data sample** to be collected at the **Y(6S)** energy

• η transitions from Υ(6S)

- could be used to access missing states below BB threshold (in particular Y(2D) triplet)
- heavy quark spin symmetry violating —> comparison with QCD multipole expansion calculations
- results with 50 fb⁻¹, but more statistics will be needed for Y(2D) discovery

from similar transitions from Y(5S), it is reasonable to expect cross-sections < 1500 fb

Dark sector searches

- BABAR and NA64 ruled out the possibility to fully explain the g-2 anomaly introducing a dark photon
- But can still partially explain it (+ other NP), and it is still an important portal to light DM
- Preliminary projection with <u>20 fb⁻¹ of data in</u> <u>Phase 2</u> shows a big exclusion potential for Belle II on invisible decays
- Very challenging signature: $\underline{A'}(\rightarrow invisible) + \chi$
 - special single photon trigger required
 - using KLM cluster information to reject events falling into the ECL gaps

More details: Search for dark forces in flavour experiments, T.Czank

- excellent tracking efficiency to reject events containing tracks
- studies on-going

Conclusions

- **Belle II** is ready to collect <u>the legacy of the 1st generation of B-factories</u>, and to continue on the path set by them
- Its main purpose will be the <u>search for NP signatures</u> at the intensity frontier, along with a deeper knowledge of the nature of QCD in describing matter
- <u>Complementarity with LHC</u> (NP searches at the intensity vs. energy frontier, complementarity and competition with LHCb)
- The physics program will be wide:
 - some highlights have been summarized in this talk
 - many other possibilities and developing ideas behind the corner
- Possibility of obtaining the first physics results in the very next future, even during Phase 2 (2018)

More on Belle II:

- SuperKEKB & Belle II status, R.de Sangro
- Alignment and Calibration Framework for the Belle II detector (poster), J.Kandra

14

CKMFitter: 2016 vs. 2025

	World average	
Input	2016	Belle II
		(+LHCb)
		2025
$ V_{ub} $ (semileptonic)[10 ⁻³]	$4.01 \pm 0.08 \pm 0.22$	± 0.10
$ V_{cb} $ (semileptonic)[10 ⁻³]	$41.00 \pm 0.33 \pm 0.74$	± 0.57
$\mathcal{B}(B o au u)$	1.08 ± 0.21	± 0.04
$\sin 2eta$	0.691 ± 0.017	± 0.008
$\gamma[^\circ]$	$73.2_{-7.0}^{+6.3}$	± 1.5
		(± 1.0)
$\alpha[^{\circ}]$	$87.6^{+3.5}_{-3.3}$	± 1.0
Δm_d	0.510 ± 0.003	-
Δm_s	17.757 ± 0.021	-
$\mathcal{B}(B_s \to \mu \mu)$	$2.8^{+0.7}_{-0.6}$	(± 0.5)
f_{B_s}	$0.224 \pm 0.001 \pm 0.002$	0.001
B_{B_s}	$1.320 \pm 0.016 \pm 0.030$	0.010
f_{B_s}/f_{B_d}	$1.205\pm 0.003\pm 0.006$	0.005
B_{B_s}/B_{B_d}	$1.023 \pm 0.013 \pm 0.014$	0.005

- Comparison with theoretical predictions in bins of q²:
 - BIP: EPJC 76 (2016) 440
 - CDHMV: JHEP 06 (2016) 092, JHEP 10 (2016) 075, JHEP 04 (2017) 016
 - EOS: PRD 95 (2017) 035029
 - flav.io: JHEP 08 (2016) 098
 - JC: PRD 93 (2016) 014028

$B \rightarrow D^{(*)} \tau \nu - \tau$ polarization

P. Urquijo, XIIth Meeting on B Physics, Naples 2017

Rest Of Event (ROE)

- Selection of events with only 1 K^{\pm} in the ROE to tag the flavor of D^0 at production
- Expected performances:
 - tag efficiency ~27%
 - mistag level ~13%

LFV in τ decays – state of the art

Bottomonium

$Y(nS) \rightarrow \pi Z_b, Z_b \rightarrow \pi h_b(mP)$ transitions

- Missing mass for either the 2 pion system, or each pion individually
- One of the pions' missing mass must be within [10.55,10.70] GeV/c² to select the pion from $\Upsilon(nS) \rightarrow \pi Z_b$ transition
 - missing mass used to deduce the Z_b properties
- Additional requirements to suppress background:
 - tight PID for pion hypothesis
 - pions must originate from the interaction point
- Fit to the $M_{miss}(\pi)$ distribution with a Gaussian + 4th-order Chebyshev polynomial

