

CP Violation sensitivity at the Belle II Experiment

Luigi Li Gioi – for the Belle II collaboration Max-Planck-Institut für Physik, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

29th Rencontres de Blois – May 30th 2017

The Unitarity Triangle

 $\lambda \approx 0.22$: Cabibbo angle

- All flavor variables constrained in the SM CKM fit are in good agreement with experimental observations
- Some variables still to be measured precisely
 - therefore a lot of room for surprises !

Time dependent measurements

Sin(2 β) : b \rightarrow ccs

Phys. Rev. Lett. 108 171802 (2012)

TABLE II. *CP* violation parameters for each $B^0 \rightarrow f_{CP}$ mode and from the simultaneous fit for all modes together. The first and second errors are statistical and systematic uncertainties, respectively.

Decay mode	$\sin 2\phi_1 \equiv -\xi_f \mathcal{S}_f$	\mathcal{A}_{f}
$J/\psi K_S^0$	$+0.670\pm 0.029\pm 0.013$	$-0.015\pm0.021^{+0.045}_{-0.023}$
$\psi(2S)K_S^0$	$+0.738\pm 0.079\pm 0.036$	$+0.104 \pm 0.055 ^{+0.047}_{-0.027}$
$\chi_{c1}K_S^0$	$+0.640\pm 0.117\pm 0.040$	$-0.017 \pm 0.083 \substack{+0.046 \\ -0.026}$
$J/\psi \tilde{K}_L^0$	$+0.642\pm 0.047\pm 0.021$	$+0.019\pm0.026^{+0.017}_{-0.041}$
All modes	$+0.667\pm 0.023\pm 0.012$	$+0.006 \pm 0.016 \pm 0.012$

Source	Irreducible	Error on \mathcal{S}	Error on \mathcal{A}
Vertexing	Х	± 0.007	± 0.007
Δt resolution		± 0.007	± 0.001
Tag-side interference	Х	± 0.001	± 0.008
Flavor tagging		± 0.004	± 0.003
Possible fit bias		± 0.004	± 0.005
Signal fraction		± 0.004	± 0.002
Background Δt PDFs		± 0.001	< 0.001
Physics parameters		± 0.001	< 0.001
Total		± 0.012	± 0.012

be considered

Blois 2017

FIG. 2 (color online). The background-subtracted Δt distribution (top) for q = +1 (red) and q = -1 (blue) events and asymmetry (bottom) for good tag quality (r > 0.5) events for all CP-odd modes combined (left) and the CP-even mode (right).

Irreducible systematic errors:

- Vertexing (without detector) upgrade)
- Tag-side interference
- More sophisticated treatment will

Pixel detector needed

- 40 times increase of luminosity \rightarrow higher background
- Lower boost \rightarrow smaller separation between the B mesons

Most suited technology : DEPFET

- Innermost detector system as close as possible to IP
- Highly granular pixel sensors provide most accurate 2D position information
- Reconstruction of primary and secondary vertices of short-lived particles
 - Decay of particles is typical in the order of 100µm from the IP

Vertex fit

Blois 2017

Luigi Li Gioi

Flavor tagging

Blois 2017

Tracks

Luigi Li Gioi

Sin(2β) : expected errors

 ${
m B^0}
ightarrow {
m J}/\psi ~{
m Ks}$

	Belle	Belle II	leptonic
			categories
$S (50 \text{ ab}^{-1})$			
stat.	0.0035	0.0035	0.0060
syst. reducible	0.0012	0.0012	0.0012
syst. irreducible	0.0082	0.0044	0.0040
$A (50 \text{ ab}^{-1})$			
stat.	0.0025	0.0025	0.0043
syst. reducible	0.0007	0.0007	0.0007
syst. irreducible	$^{+0.043}_{-0.022}$	$^{+0.042}_{-0.011}$	0.011

- Sin(2β) will remain the most precise measurement on the Unitarity Triangle parameters
- In Belle II the measurement will be dominated by systematics
 - Effort concentrated in understand and reducing them

 $b \rightarrow c \, \overline{c} \, s$

	Belle	Belle II	leptonic
			categories
$S (50 \text{ ab}^{-1})$			
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A (50 \text{ ab}^{-1})$			
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

Three hypotheses

- Belle: same Belle non reducible systematics
- Belle II: vertex systematic / 2
- Leptonic category: only leptonic categories for the flavor tagging

Sin(2β): b \rightarrow qqs

In principle measures $sin2\beta$, but sensitive to new physics

		siı	$n(2\beta^{ef})$	^ĭ)≡	sin(2	2¢1	eff) H	FAC	4 3Y
o⇒co	s	World Av	erage			is .	. ().68 ± 0.	02
	0	BaBar		1		<u> </u>	0.66±(0.17 ± 0.17	07
	ž	Belle				*		0.90	119
	÷	Average				<u>.</u>		0.74	1.13
Ŷ		Babar					0.57 ± 0.00	$1.08 \pm 0.07 \pm 0.07$	02
~		Averade				1	0.60 ± ($1.07 \pm 0.01 \pm $	000
	±∽	BaBar	- · - · - · - · - · - · - ·		· - · - · - · - · - · - · - · - · - · -			+0:21 + n	06-1
	S	Belle			<	T	0.30 + 0	$0.24 \pm 0.32 + $	08
	×	Average				<u> </u>	($0.72 \pm 0.$	19
ę,	¥	BaBar				ō	0.55 ± ().20 ± 0.	03
×		Belle				55	0.67 ± 0).31 ± 0.	.08
_ <u>۲</u>		Average).57 ± 0.	17
	S	BaBar		H	20		$1.35_{\pm 0.20}^{\pm 0.20} \pm 0$	$0.06 \pm 0.$	03
	<u> </u>	Belle				<u> </u>	$1.64_{-0.25} \pm 0$	0.09 ± 0.00	10
	<u>с</u> .	Average				<u>1</u>		0.54 +0:26	1.21
Š		Bollo					0.55	$0.29 \pm 0.$	02
3		Average				28		$7.52 \pm 0.71 + 0$	21
		BaBar			· - · - · - · - · - · - · - · - · - · -			0.74 *	142
	Ľ,	Belle			. 4	<u>e</u> 2		0.63 +	1:16
	f	Average			75 -	2		0.69 +0	1:10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- · - · -	BaBar			$< \rightarrow$	0.4	B±0.52±0	$0.06 \pm 0.01$	10
	60 -	Average		() <mark>†</mark>	<u><u><u> </u></u></u>	5	(	).48 ± 0.	53
	Ľ,	BaBar	2 Z		<u> </u>	0.2	$0 \pm 0.52 \pm 0$	$0.07 \pm 0.$	07
	<u> </u>	Average	8	t	5	Ē		$0.20 \pm 0.$	53
പ		Avorago		2			-0.72±0	$1.71 \pm 0.$	71
-0	<u>≁</u> ∽-	BaBar				<u>)</u>	j	7.72 ± 0. "∩ 07"+0	0.68-
Ĕ	<b>ں</b> 0	Average	Ģ		5		1	0.97 +	1:66
- <u> </u>	- <u>6</u>	BaBar	2			510.6	1 ± 0.31 ± 0	$0.05 \pm 0.05$	09-1
×	~	Average			<u>č</u>		(	).01 ± 0.	33
- ' <b>F</b>	¥	BaBar			g · · · · ·	Š	0.65±0	).12±0,	03
μ	$\leq$	Belle			5	-		0.76	1.14
	t	Average			-	-		0.68	).10
-2	-	-	1	0	(	02	1	:	2

### $B^0 \rightarrow \phi$ Ks: expected sensitivity

Channel	$\varepsilon_{reco}$	Yield	$\sigma(S)$	0.2 Belle II Projection (Feb 2017)
$1 \text{ ab}^{-1}$ scenario:				
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	456	0.174	$\tilde{\mathbf{y}}^{\circ}_{14}$ 0.16
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	153	0.295	
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	109	0.338	ू र्ह्य 0.1
$K_S$ modes combination 0.13			0.135	·ˈ͡ø 0.08
$K_S + K_L$ modes combination 0.108			0.108	0.06
$5 \text{ ab}^{-1}$ scenario:				- 0.04 - Belle (II) baseline, 70% data Y(4S)
$\phi(K^+K^-)K_S(\pi^+\pi^-)$	35%	2280	0.078	0.02 Belle (II) improved K _s , 70% data Y(4S)
$\phi(K^+K^-)K_S(\pi^0\pi^0)$	25%	765	0.132	° 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Year
$\phi(\pi^+\pi^-\pi^0)K_S(\pi^+\pi^-)$	28%	545	0.151	
$K_S$ modes combination 0.06			0.060	Belle II projection
$K_S + K_L$ modes combination $0.048$			0.048	_

we estimate the expected yield of  $\phi K_L^0$  based on previous BaBar and Belle analyses (but use the same  $\Delta t$  resolution we estimate in  $\phi \to K^+ K^-$  for Belle II). Sensitivity study

#### Blois 2017

# $B^0 \rightarrow \eta'$ Ks: expected sensitivity



Table 1.12:  $\Delta t$  resolution for true, SxF and all selected candidates, for  $\eta(2\gamma)K_S^0(\pi^{\pm})$  and  $\eta(3\pi)K_S^0(\pi^{\pm})$  channels.

Channel	True	SxF	All
$\eta(2\gamma)K^0_S(\pi^{\pm})$	$1.22 \ ps$	$2.87 \ ps$	$1.45 \ ps$
$\eta(3\pi)K^0_S(\pi^{\pm})$	$1.17\ ps$	$2.36\ ps$	$1.50\ ps$



Similar Belle sensitivity given the same integrated luminosity

Table 1.13: Estimated rms from Toy MC studies for CP-violation parameters S and C for an integrated luminosity of 1 and 5  $ab^{-1}$  for the different channels.

	$1 \ ab^{-1}$				$5 \ ab^{-1}$				
Channel	Strategy	S	rms $S$	C	rms $C$	S	rms $S$	C	rms $C$
$\eta(2\gamma)K^0_S(\pi^{\pm})$	С	0.71	0.07	-0.11	0.06	0.71	0.04	-0.11	0.03
$\eta(3\pi)K_S^0(\pi^{\pm})$	В	0.74	0.17	-0.131	0.10	0.73	0.07	-0.13	0.04

#### Blois 2017

### Measurement of $\alpha$

M. Gronau and D. London, PRL 65 3381 (1990)

Proceeds mainly through  $b \rightarrow u\overline{u}d$  tree diagram, but penguin contributions introduce additional phases



#### Blois 2017

Luigi Li Gioi

### $\rightarrow \pi^0 \pi^0$ : converted photons R



14

Vertex



- Photon conversion inside the Belle II detector (Beam pipe + PXD)
- 3 % of  $B^0 \rightarrow \pi^0 \pi^0$  events
- ~ 5 % including  $\pi^0$  Dalitz decay
- Reconstruction efficiency will be crucial



Blois 2017

#### Isospin analysis: $B \rightarrow \pi \pi$ Belle II $S_{\pi^0\pi^0}$ บี Belle 0.83 **.**0.8 0.8 Belle II -- 0.40 0.6 0.6 --- -0.94 0.4 0.4 $\Delta \alpha \sim 4^{\circ}$ 0.2 0.2 0 n 30 90 0 60 90 120 150 180 0 30 60 120 150 180 \$**, (°) ∮**₂ (°) $\frac{50 \text{ ab}^{-1}}{1000} \Delta S_{\pi^0 \pi^0} = \pm 0.29 \pm 0.03$ Value $0.8 \text{ ab}^{-1}$ $\pm 0.03 \pm 0.08$ 5.04 $\pm 0.21 \pm 0.18$ [79] ${\cal B}_{\pi^+\pi^-}$ [10⁻⁶] $\pm 0.04 \pm 0.04$ 1.31 $\pm 0.19 \pm 0.18$ [78] ${\cal B}_{\pi^0\pi^0}$ [10⁻⁶] 78: arXiv:1705.02083 $\pm 0.26 \pm 0.38$ [79] $\pm 0.03 \pm 0.09$ 5.86 $\mathcal{B}_{\pi^+\pi^0}$ [10⁻⁶] 79: Phys. Rev., D87(3), $\pm 0.01 \pm 0.03$ $\pm 0.06 \pm 0.03$ [80] $C_{\pi^+\pi^-}$ -0.33031103 (2013) $\pm 0.01 \pm 0.01$ $S_{\pi^+\pi^-}$ -0.64 $\pm 0.08 \pm 0.03$ [80] 80: Phys. Rev., D88(9), 092003 (2013) $C_{\pi^0\pi^0}$ -0.14 $\pm 0.36 \pm 0.12$ [78] $\pm 0.03 \pm 0.01$

#### Blois 2017



### Isospin analysis: $B \rightarrow \rho \rho$

	Value	$0.8 \text{ ab}^{-1}$	$50 \ {\rm ab}^{-1}$
$f_{L, ho^+ ho^-}$	0.988	$\pm 0.012 \pm 0.023$ [74]	$\pm 0.002 \pm 0.003$
$f_{L, ho^0 ho^0}$	0.21	$\pm 0.20 \pm 0.15$ [81]	$\pm 0.03 \pm 0.02$
$\mathcal{B}_{ ho^+ ho^-}$ [10 ⁻⁶ ]	28.3	$\pm 1.5 \pm 1.5$ [74]	$\pm 0.19 \pm 0.4$
${\cal B}_{ ho^0 ho^0}$ [10 ⁻⁶ ]	1.02	$\pm 0.30 \pm 0.15$ [81]	$\pm 0.04 \pm 0.02$
$C_{ ho^+ ho^-}$	0.00	$\pm 0.10 \pm 0.06$ [74]	$\pm 0.01 \pm 0.01$
$S_{ ho^+ ho^-}$	-0.13	$\pm 0.15 \pm 0.05$ [74]	$\pm 0.02 \pm 0.01$
	Value	$0.08 \text{ ab}^{-1}$	$50 {\rm ~ab^{-1}}$
$f_{L, ho^+ ho^0}$	0.95	$\pm 0.11 \pm 0.02$ [65]	$\pm 0.004 \pm 0.003$
${\cal B}_{ ho^+ ho^0}$ [10 ⁻⁶ ]	31.7	$\pm 7.1 \pm 5.3$ [65]	$\pm 0.3 \pm 0.5$
	Value	$0.5 \ {\rm ab^{-1}}$	$50 {\rm ~ab^{-1}}$
$C_{ ho^0 ho^0}$	0.2	$\pm 0.8 \pm 0.3$ [64]	$\pm 0.08 \pm 0.01$
$S_{ ho^0 ho^0}$	0.3	$\pm 0.7 \pm 0.2$ [64]	$\pm 0.07 \pm 0.01$

64: Phys. Rev., D78, 071104 (2008)

- 65: Phys. Rev. Lett., 91, 221801 (2003)
- 74: Phys. Rev., D93(3), 032010 (2016)
- 81: [Addendum: Phys. Rev.D89,no.11, 119903(2014)] (2012),

Belle Belle II Belle II +  $(S_{00}\pi \& S_{00}\rho)$ 



Blois 2017

### Measurement of $\gamma$ with $B \rightarrow D^0 K$



Interference between these amplitudes with  $D^0/\overline{D}^0$  decaying in the same final state

- From tree level processes
- Not affected from NP in loops



The Dalitz model is needed

Strong phase differences can be measured at a charm factory



- CLEO result Phys. Rev. D 82, 112006(2010)
- Improvement expected from BES III

An error of 1.6° is expected

- Including more D^(*) decay modes
- Integrated luminosity = 50  $ab^{-1}$
- Assuming BES III will collect 10 fb⁻¹

### Blois 2017

### Outlook

The B2TIP report: https://confluence.desy.de/display/BI/B2TiP+WebHome



**Blois 2017** 

0.1

0.0 ⊾ -0.4

-0.2

0.0

0.2

ρ

Luigi Li Gioi

1.0

0.8

0.6

0.1

0.0 ∟ -0.4

-0.2

0.0

0.2

ρ

0.4

 $V_{ub}$ 

0.4

1.0

0.8

0.6

### **Backup slides**

### Belle II



#### Blois 2017

### The impact parameter

The impact parameters:  $d_0$  and  $z_0$ 

- defined as the projections of distance from the point of closest approach to the origin
- good measure of the overall performance of the tracking system
- used to find the optimal tracker configuration





### Belle Data – MC comparison



### $B^0 \rightarrow \phi Ks$



 $BF(\phi \rightarrow K^+K^-) \sim 50\%$ 

 $\mathsf{BF}(\phi \rightarrow \pi^+\pi^-\pi^0) \sim 15\%$ 

 $\mathsf{BF}(\mathsf{K}_{S} \to \pi^{+}\pi^{-}) \sim 69\%$ 

 $BF(K_s \rightarrow \pi^0\pi^0) \sim 31\%$ 



Cleanest mode, all charged particles in final state



Lower statistics and harder (because of  $\pi^{0}$ 's)



Never tried before at BaBar and Belle

Not yet started looking at  $K_L^{0}$ 's



Blois 2017

### **∆t** resolution





At least one track ( $e^+$  or  $e^-$ ) has one PXD Hit



At least one track ( $e^+$  or  $e^-$ ) has one PXD Hit

#### Blois 2017



- Precision improvement with respect to the previously published result is factor 2.
- Increase of data, simultaneous extraction of observables and analysis optimization for high signal yield.

### Blois 2017



# BaBar + Belle $B^0 \rightarrow D_{CP} h^0$

ps

Events / 1



Phys. Rev. Lett. 115, 121604

- Leading order: tree
- Sub-leading order: tree, phase within the SM
- Independent form NP in loops
- Suitable to measure  $\beta$
- Branching fraction is the limiting factor



B0  $\rightarrow$  D(*)⁰ h⁰, h⁰= $\pi^{0}$ ,  $\eta$ ,  $\omega$ D⁰  $\rightarrow$  K⁺K⁻, Ks  $\pi^{0}$  and Ks  $\omega$ Yields =

- 508±31events(BaBar)
- 757±44events(Belle)



- $C = -0.02 \pm 0.07 \,(\text{stat.}) \pm 0.03 \,(\text{syst.}).$ 
  - First observation of CPV(5.4σ)
  - Belle II : δ(β) ~ 0.015
  - Important test for  $b \rightarrow c \overline{c} s$

### Blois 2017



D^o multi-body decay: D^o  $\rightarrow$  Ks  $\pi$   $\pi$  model independent cos 2 $\beta$  And sin 2 $\beta$  can be extracted independently PLB 6241 (2005)



$$\begin{aligned} \sin 2\varphi_1 &= 0.43 \pm 0.27(\text{stat}) \pm 0.08(\text{syst}), \\ \cos 2\varphi_1 &= 1.06 \pm 0.33(\text{stat})^{+0.21}_{-0.15}(\text{syst}), \\ \varphi_1 &= 11.7^\circ \pm 7.8^\circ(\text{stat}) \pm 2.1^\circ(\text{syst}). \end{aligned}$$

#### Blois 2017

### Photon polarization

Radiative B decays, with  $b \rightarrow s \gamma$  transitions, dominated by loop (penguin) diagrams New physics could enter at same order (1-loop) as Standard Model

Standard Model makes definite prediction of photon helicity

(D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)).

- $B^0 \rightarrow X_s \gamma_R$
- $\overline{B}^0 \rightarrow X_s \gamma_L$

If a helicity flip occurs, the photon will also flip its helicity, producing  $B^0 \rightarrow X_s \gamma_L$ 

- Rate ~  $m_s/m_b$  at the leading contribution (P. Ball and R. Zwicky, Phys. Lea. B 642, 478 (2006))
- Corrections can increase this value

No common final state for  $B^0$  and  $\overline{B}^0$ 

 Suppression of asymmetry S due to interference between B^o mixing and decay diagrams (TD CP asymmetry)

$$\mathcal{S}^{\mathrm{SM}} = -\sin 2\phi_1 \frac{m_s}{m_b} \left[2 + \mathcal{O}(\alpha_s)\right] + \mathcal{S}^{\mathrm{SM}, s\gamma g}$$

C < 0.01 (direct CP violation) (Greub at al., Nucl. Phys B 434, 39 (1995))

TD CP asymmetry measurements give an indirect measurement of photon polarization

#### Blois 2017

### $B^0 \rightarrow Ks \pi^0 \gamma$ : TD analysis



#### Phys. Rev. D 74, 111104(R) (2006)



#### Blois 2017

 $B^0 \rightarrow Ks \pi^0 \gamma$ 



### Very important decay mode for Belle II

#### Blois 2017