CP Violation sensitivity at the Belle II Experiment

Luigi Li Gioi - for the Belle II collaboration Max-Planck-Institut für Physik, München

$29^{\text {th }}$ Rencontres de Blois - May $30^{\text {th }} 2017$

The Unitarity Triangle

$\lambda \approx 0.22$: Cabibbo angle

Blois 2017

- All flavor variables constrained in the SM CKM fit are in good agreement with experimental observations
- Some variables still to be measured precisely
\rightarrow therefore a lot of room for surprises !

Luigi Li Gioi

Time dependent measurements

- $Y(4 S)$ is the first resonance just above the $B \bar{B}$ production threshold
- Only $\bar{B} \bar{B}$ pairs are produced, and are at rest in the $Y(4 S)$ frame
$\Delta t=\frac{\Delta z}{\beta \gamma c}$
Resolution on Δt will be dominated by the resolution of the tagging side vertex

Δ t probability parametrization $\mathcal{P}(\Delta t, q)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1+q\left(\mathcal{A}_{C P} \cos \Delta m_{d} \Delta t+\mathcal{S}_{C P} \sin \Delta m_{d} \Delta t\right)\right]$

$\operatorname{Sin}(2 \beta): b \rightarrow c c s$

Phys. Rev. Lett. 108171802 (2012)

FIG. 2 (color online). The background-subtracted Δt distribution (top) for $q=+1$ (red) and $q=-1$ (blue) events and asymmetry (bottom) for good tag quality ($r>0.5$) events for all $C P$-odd modes combined (left) and the $C P$-even mode (right).

Irreducible systematic errors:

- Vertexing (without detector upgrade)
- Tag-side interference
\rightarrow More sophisticated treatment will be considered

TABLE II. $\quad C P$ violation parameters for each $B^{0} \rightarrow f_{C P}$ mode and from the simultaneous fit for all modes together. The first and second errors are statistical and systematic uncertainties, respectively.

Decay mode	$\sin 2 \phi_{1} \equiv-\xi_{f} \mathcal{S}_{f}$	\mathcal{A}_{f}
$J / \psi K_{S}^{0}$	$+0.670 \pm 0.029 \pm 0.013$	$-0.015 \pm 0.021_{-0.023}^{+0.045}$
$\psi(2 S) K_{S}^{0}$	$+0.738 \pm 0.079 \pm 0.036$	$+0.104 \pm 0.055_{-0.0 .077}^{+0.047}$
$\chi_{c 1} K_{S}^{0}$	$+0.640 \pm 0.117 \pm 0.040$	$-0.017 \pm 0.083_{-0.046}^{+0.046}$
$J / \psi K_{L}^{0}$	$+0.642 \pm 0.047 \pm 0.021$	$+0.019 \pm 0.026_{-0.047}^{+0.041}$
All modes	$+0.667 \pm 0.023 \pm 0.012+0.006 \pm 0.016 \pm 0.012$	

Source	Irreducible Error on \mathcal{S} Error on \mathcal{A}		
Vertexing	X	± 0.007	± 0.007
Δt resolution		± 0.007	± 0.001
Tag-side interference	X	± 0.001	± 0.008
Flavor tagging		± 0.004	± 0.003
Possible fit bias		± 0.004	± 0.005
Signal fraction	± 0.004	± 0.002	
Background Δt PDFs		± 0.001	<0.001
Physics parameters		± 0.001	<0.001
Total	± 0.012	± 0.012	

Belle II Pixel Vertex Detector

- 40 times increase of luminosity \rightarrow higher background
- Lower boost \rightarrow smaller separation between the B mesons

Pixel detector needed

Most suited technology : DEPFET

- Innermost detector system as close as possible to IP
- Highly granular pixel sensors provide most accurate 2D position information
- Reconstruction of primary and secondary vertices of short-lived particles
\rightarrow Decay of particles is typical in the order of $100 \mu \mathrm{~m}$ from the IP

Vertex fit

Δt resolution

Tag side vertex fit: Using RAVE Adaptive Vertex Fit (AVF) algorithm:
Down-weights outliers dynamically, instead of using hard cutoffs (important for 3+ track vertices). CMS NOTE 2008/033.

Tag side vertex fit

Flavor tagging

Categories	Targets
Electron	e^{-}
Intermediate Electron	e^{+}
Muon	μ^{-}
Intermediate Muon	μ^{+}
KinLepton	e^{-}
Intermediate KinLepton	ℓ^{+}
Kaon	K^{-}
KaonPion	K^{-}, π^{+}
SlowPion	π^{+}
FastPion	π^{-}
MaximumP	ℓ^{-}, π^{-}
FSC	ℓ^{-}, π^{+}
Lambda	Λ
Total $=13$	

$\operatorname{Sin}(2 \beta)$: expected errors

$\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{Ks}$			
	Belle	Belle II	leptonic categories
$S\left(50 \mathrm{ab}^{-1}\right)$			
stat.	0.0035	0.0035	0.0060
syst. reducible	0.0012	0.0012	0.0012
syst. irreducible	0.0082	0.0044	0.0040
$A\left(50 \mathrm{ab}^{-1}\right)$			
stat.	0.0025	0.0025	0.0043
syst. reducible	0.0007	0.0007	0.0007
syst. irreducible	${ }_{-0.022}^{+0.043}$	${ }_{-0.011}^{+0.042}$	0.011

- $\operatorname{Sin}(2 \beta)$ will remain the most precise measurement on the Unitarity Triangle parameters
- In Belle II the measurement will be dominated by systematics
\rightarrow Effort concentrated in understand and reducing them
$\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{s}$

	Belle	Belle II	leptonic categories
$S\left(50 \mathrm{ab}^{-1}\right)$			
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A\left(50 \mathrm{ab}^{-1}\right)$			
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

Three hypotheses

- Belle: same Belle non reducible systematics
- Belle II: vertex systematic / 2
- Leptonic category: only leptonic categories for the flavor tagging

$\operatorname{Sin}(2 \beta): b \rightarrow q q s$

In principle measures sin2 β, but sensitive to new physics

$\mathrm{B}^{0} \rightarrow \phi \mathrm{Ks}:$ expected sensitivity

Channel	$\varepsilon_{\text {reco }}$	Yield	$\sigma(S)$
$1 \mathrm{ab}^{-1}$ scenario:			
$\phi\left(K^{+} K^{-}\right) K_{S}\left(\pi^{+} \pi^{-}\right)$	35%	456	0.174
$\phi\left(K^{+} K^{-}\right) K_{S}\left(\pi^{0} \pi^{0}\right)$	25%	153	0.295
$\phi\left(\pi^{+} \pi^{-} \pi^{0}\right) K_{S}\left(\pi^{+} \pi^{-}\right)$	28%	109	0.338
K_{S} modes combination		0.135	
$K_{S}+K_{L}$ modes combination		0.108	
5 ab${ }^{-1}$ scenario:			
$\phi\left(K^{+} K^{-}\right) K_{S}\left(\pi^{+} \pi^{-}\right)$	35%	2280	0.078
$\phi\left(K^{+} K^{-}\right) K_{S}\left(\pi^{0} \pi^{0}\right)$	25%	765	0.132
$\phi\left(\pi^{+} \pi^{-} \pi^{0}\right) K_{S}\left(\pi^{+} \pi^{-}\right)$	28%	545	0.151
K_{S} modes combination		0.060	
$K_{S}+K_{L}$ modes combination		0.048	

we estimate the expected yield of ϕK_{L}^{0} based on

Belle II projection

Sensitivity study previous BaBar and Belle analyses (but use the same Δt resolution we estimate in $\phi \rightarrow K^{+} K^{-}$for Belle II).

$B^{0} \rightarrow \eta$ ' Ks: expected sensitivity

Table 1.12: Δt resolution for true, SxF and all selected candidates, for $\eta(2 \gamma) K_{S}^{0}\left(\pi^{ \pm}\right)$and $\eta(3 \pi) K_{S}^{0}\left(\pi^{ \pm}\right)$channels.

Channel	True	SxF	All
$\eta(2 \gamma) K_{S}^{0}\left(\pi^{ \pm}\right)$	$1.22 p s$	$2.87 p s$	$1.45 p s$
$\eta(3 \pi) K_{S}^{0}\left(\pi^{ \pm}\right)$	$1.17 p s$	$2.36 p s$	$1.50 p s$

Similar Belle sensitivity given the same integrated luminosity

Table 1.13: Estimated rms from Toy MC studies for CP-violation parameters S and C for an integrated luminosity of 1 and $5 a b^{-1}$ for the different channels.

		$1 a b^{-1}$				$5 a b^{-1}$			
Channel	Strategy	S	$\mathrm{rms} S$	C	$\mathrm{rms} C$	S	$\mathrm{rms} S$	C	$\mathrm{rms} C$
$\eta(2 \gamma) K_{S}^{0}\left(\pi^{ \pm}\right)$	C	0.71	0.07	-0.11	0.06	0.71	0.04	-0.11	0.03
$\eta(3 \pi) K_{S}^{0}\left(\pi^{ \pm}\right)$	B	0.74	0.17	-0.131	0.10	0.73	0.07	-0.13	0.04

Measurement of α

M. Gronau and D. London, PRL 653381 (1990)

Proceeds mainly through $b \rightarrow u \bar{u} d$ tree diagram, but penguin contributions introduce additional phases

Used decay modes:

- $B \rightarrow \pi \pi$
- B $\rightarrow \rho \rho$
- $B \rightarrow \rho \pi$

Extra weak and strong phases $+|\mathrm{P} / \mathrm{T}|$ modify α by $\Delta \alpha$:

$$
\sin (2 \alpha) \rightarrow \sin \left(2 \alpha_{\mathrm{eff}}\right) \quad \alpha_{\mathrm{eff}}=\alpha+\Delta \alpha
$$

To relate α to $\alpha_{\text {eff }}$:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}} A^{+-}+A^{00}=A^{+0} \\
& \frac{1}{\sqrt{2}} \bar{A}^{+-}+\bar{A}^{00}=\bar{A}^{-0} \\
& A^{+0}=\bar{A}^{-0} \text { (pure tree) }
\end{aligned}
$$

$B^{0} \rightarrow \pi^{0} \pi^{0}:$ converted photons

$\frac{E}{\lambda}$

- Photon conversion inside the Belle II detector (Beam pipe + PXD)
- 3% of $B^{0} \rightarrow \pi^{0} \pi^{0}$ events
- -5% including π^{0} Dalitz decay
- Reconstruction efficiency will be crucial

Isospin analysis: $B \rightarrow \pi \pi$

	Value	$0.8 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$	$=\Delta S_{\pi^{0} \pi^{0}}= \pm 0.29 \pm 0.03$
$\mathcal{B}_{\pi^{+} \pi^{-}\left[10^{-6}\right]}$	5.04	$\pm 0.21 \pm 0.18$ [79]	$\pm 0.03 \pm 0.08$	
$\mathcal{B}_{\pi^{0} \pi^{0}\left[10^{-6}\right]}$	1.31	$\pm 0.19 \pm 0.18$ [78]	$\pm 0.04 \pm 0.04$	
$\mathcal{B}_{\left.\pi^{+} \pi^{0}{ }^{\left[10^{-6}\right]}\right]}$	5.86	$\pm 0.26 \pm 0.38$ [79]	$\pm 0.03 \pm 0.09$	78: arXiv:1705.0208
$C_{\pi^{+} \pi^{-}}$	-0.33	$\pm 0.06 \pm 0.03$ [80]	$\pm 0.01 \pm 0.03$	$031103 \text { (2013) }$
$S_{\pi^{+} \pi^{-}}$	-0.64	$\pm 0.08 \pm 0.03$ [80]	$\pm 0.01 \pm 0.01$	80: Phys. Rev., D88(9),
$C_{\pi^{0} \pi^{0}}$	-0.14	$\pm 0.36 \pm 0.12$ [78]	$\pm 0.03 \pm 0.01$	3

Isospin analysis: $\mathbf{B} \rightarrow \rho \rho$

	Value	$0.8 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
$f_{L, \rho^{+} \rho^{-}}$	0.988	$\pm 0.012 \pm 0.023[74]$	$\pm 0.002 \pm 0.003$
$f_{L, \rho^{0} \rho^{0}}$	0.21	$\pm 0.20 \pm 0.15[81]$	$\pm 0.03 \pm 0.02$
$\mathcal{B}_{\rho^{+} \rho^{-}}\left[10^{-6}\right]$	28.3	$\pm 1.5 \pm 1.5[74]$	$\pm 0.19 \pm 0.4$
$\mathcal{B}_{\rho^{0} \rho^{0}\left[10^{-6}\right]}$	1.02	$\pm 0.30 \pm 0.15[81]$	$\pm 0.04 \pm 0.02$
$C_{\rho^{+} \rho^{-}}$	0.00	$\pm 0.10 \pm 0.06[74]$	$\pm 0.01 \pm 0.01$
$S_{\rho^{+} \rho^{-}}$	-0.13	$\pm 0.15 \pm 0.05[74]$	$\pm 0.02 \pm 0.01$
	Value	$0.08 \mathrm{ab}^{-1}$	$50 \mathrm{ab}^{-1}$
$f_{L, \rho^{+} \rho^{0}}$	0.95	$\pm 0.11 \pm 0.02[65]$	$\pm 0.004 \pm 0.003$
$\mathcal{B}_{\rho^{+} \rho^{0}\left[10^{-6}\right]}$	31.7	$\pm 7.1 \pm 5.3[65]$	$\pm 0.3 \pm 0.5$
	Value	0.5 ab	$50 \mathrm{ab}^{-1}$
$C_{\rho^{0} \rho^{0}}$	0.2	$\pm 0.8 \pm 0.3[64]$	$\pm 0.08 \pm 0.01$
$S_{\rho^{0} \rho^{0}}$	0.3	$\pm 0.7 \pm 0.2[64]$	$\pm 0.07 \pm 0.01$

64: Phys. Rev., D78, 071104 (2008)
65: Phys. Rev. Lett., 91, 221801 (2003)
74: Phys. Rev., D93(3), 032010 (2016)
81: [Addendum: Phys. Rev.D89,no.11, 119903(2014)] (2012),

Measurement of γ with $B \rightarrow D^{0} K$

Interference between these amplitudes with $\mathrm{D}^{\circ} / \mathrm{D}^{0}$ decaying in the same final state

- From tree level processes
- Not affected from NP in loops

Strong phase differences can be measured at a charm factory

- CLEO result Phys. Rev. D 82, 112006(2010)
- Improvement expected from BES III

The Dalitz model is needed

Outlook

The B2TIP report: https://confluence.desy.de/display/BI/B2TiP+WebHome

Before the B-factories

After the B-factories

CKM mechanism will be tested at 1% level

Backup slides

Belle II

The impact parameter

The impact parameters: d_{0} and z_{0}

- defined as the projections of distance from the point of closest approach to the origin
- good measure of the overall performance of the tracking system
- used to find the optimal tracker configuration

Almost a factor 2 improvement respect to BaBar

Belle Data - MC comparison

- Belle MC and data
- Belle II flavor tagging algorithm

Efficiency

- Belle Converted MC = 32 \%
- Belle = 29 \%

$\mathrm{B}^{0} \rightarrow \phi \mathrm{Ks}$

1)

2)

3)

4)

Cleanest mode, all charged particles in final state

Lower statistics and harder (because of π^{0} s)

Never tried before at BaBar and Belle

Not yet started looking at $K_{L}{ }^{01} s$

$$
\begin{aligned}
& \mathrm{BF}\left(\phi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right) \sim 50 \% \\
& \mathrm{BF}\left(\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) \sim 15 \% \\
& \mathrm{BF}\left(\mathrm{~K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}\right) \sim 69 \% \\
& \mathrm{BF}\left(\mathrm{~K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0}\right) \sim 31 \%
\end{aligned}
$$

Vertex resolution

Δt resolution

$B^{0}{ }_{\mathrm{sc}} \rightarrow \pi^{0}{ }_{\mathrm{ss}} \pi^{0}{ }_{\mathrm{sc}}$

$$
\hookrightarrow \gamma_{\mathrm{s}} \gamma_{\mathrm{c}}
$$

$$
\hookrightarrow e^{+} e^{-}
$$

At least one track (e^{+}or e^{-}) has one PXD Hit

$$
B_{\text {dal }}^{0} \rightarrow \pi_{\text {ss }}^{0} \pi_{\text {dal }}^{0}
$$

$$
\hookrightarrow e^{+} e^{-} \gamma
$$

At least one track (e^{+}or e^{-}) has one PXD Hit

Flavor integrated
Phys. Rev. D 93032010 (2016)

- Precision improvement with respect to the previously published result is factor 2.
- Increase of data, simultaneous extraction of observables and analysis optimization for high signal yield.

BaBar + Belle $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{CP}} \mathrm{h}^{0}$

- Leading order: tree

Phys. Rev. Lett. 115, 121604

- Sub-leading order: tree, phase within the SM
- Independent form NP in loops
- Suitable to measure β
- Branching fraction is the limiting factor

$B 0 \rightarrow D()^{0} h^{0}, h^{0}=\pi^{0}, \eta, \omega$
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}, \mathrm{Ks} \pi^{0}$ and $\mathrm{Ks} \omega$
Yields =
- 508 ± 31 events(BaBar)
- 757さ44events(Belle)

- First observation of CPV(5.4б)
- Belle II : $\delta(\beta) \sim 0.015$
- Important test for b c c c s

$\cos 2 \beta$ with $\mathrm{B}^{0} \rightarrow \mathrm{D}_{\mathrm{CP}_{\text {Prus }}} \mathrm{h}^{0}$

Phys. Rev. D 94052004 (2016)
D^{0} multi-body decay: $\mathrm{D}^{0} \rightarrow \mathrm{Ks} \pi \pi$ model independent $\cos 2 \beta$ And $\sin 2 \beta$ can be extracted independently PLB 6241 (2005)

$$
\begin{aligned}
& C_{i}=\frac{\int_{\mathcal{D}_{i}}\left|\mathcal{A}_{D}\right|\left|\overline{\mathcal{A}}_{D}\right| \cos \Delta \delta_{D} d m_{+}^{2} d m_{-}^{2}}{\sqrt{K_{i} K_{-i}}} \\
& S_{i}=\frac{\int_{\mathcal{D}_{i}}\left|\mathcal{A}_{D}\right|\left|\overline{\mathcal{A}}_{D}\right| \sin \Delta \delta_{D} d m_{+}^{2} d m_{-}^{2}}{\sqrt{K_{i} K_{-i}}} \\
& \mathcal{P}_{i}\left(\Delta t, \varphi_{1}\right)=h_{2} e^{-\frac{|\Delta t|}{\tau_{B}}}\left[1+q_{B} \frac{K_{i}-K_{-i}}{K_{i}+K_{-i}} \cos \left(\Delta m_{B} \Delta t\right)+2 q_{B} \xi_{h^{0}}(-1)^{L} \frac{\sqrt{K_{i} K_{-i}}}{K_{i}+K_{-i}} \sin \left(\Delta m_{B} \Delta t\right)\left(S_{i} \cos 2 \varphi_{1}+C_{i} \sin 2 \varphi_{1}\right)\right] \\
& \sin 2 \varphi_{1}=0.43 \pm 0.27 \text { (stat) } \pm 0.08 \text { (syst), } \\
& \cos 2 \varphi_{1}=1.06 \pm 0.33(\text { stat })_{-0.15}^{+0.21}(\text { syst }), \\
& \varphi_{1}=11.7^{\circ} \pm 7.8^{\circ}(\text { stat }) \pm 2.1^{\circ}(\text { syst }) .
\end{aligned}
$$

Photon polarization

Radiative B decays, with $b \rightarrow s \gamma$ transitions, dominated by loop (penguin) diagrams New physics could enter at same order (1-loop) as Standard Model

Standard Model makes definite prediction of photon helicity
(D. Atwood et al., Phys. Rev. Lea. 79, 185 (1997)):

- $\mathrm{B}^{0} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma_{\mathrm{R}}$
- $\overline{\mathrm{B}}^{0} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma_{\mathrm{L}}$

If a helicity flip occurs, the photon will also flip its helicity, producing $B^{0} \rightarrow X_{s} \gamma_{L}$

- Rate $\sim m_{s} / m_{b}$ at the leading contribution (P. Ball and R. Zwicky, Phys. Lea. B 642, 478 (2006))
- Corrections can increase this value

No common final state for B^{0} and \bar{B}^{0}

- Suppression of asymmetry S due to interference between B^{0} mixing and decay diagrams (TD CP asymmetry)

$$
\mathcal{S}^{\mathrm{SM}}=-\sin 2 \phi_{1} \frac{m_{s}}{m_{b}}\left[2+\mathcal{O}\left(\alpha_{S}\right)\right]+\mathcal{S}^{\mathrm{SM}, s \gamma g}
$$

C <0.01 (direct CP violation) (Greub at al., Nucl. Phys B 434, 39 (1995))

- TD CP asymmetry measurements give an indirect measurement of photon polarization

$B^{0} \rightarrow K s \pi^{0} \gamma:$ TD analysis

Phys. Rev. D 74, 111104(R) (2006)

$$
\begin{aligned}
& \mathcal{S}_{K_{S}^{0} \pi^{0} \gamma}=-0.10 \pm 0.31(\text { stat }) \pm 0.07 \text { (syst), } \\
& \mathcal{A}_{K_{S}^{0} \pi^{0} \gamma}=-0.20 \pm 0.20 \text { (stat) } \pm 0.06 \text { (syst), }
\end{aligned}
$$

No significant CP asymmetry

$$
\begin{aligned}
& \mathcal{S}_{K^{* 0} \gamma}=-0.32_{-0.33}^{+0.36} \pm 0.05 \\
& \mathcal{A}_{K^{* 0} \gamma}=-0.20 \pm 0.24 \pm 0.05
\end{aligned}
$$

$\mathrm{B}^{0} \rightarrow \mathrm{Ks} \pi^{0} \gamma$

Contours give $-2 \Delta(\ln L)=\Delta \chi^{2}=1$, corresponding to $39.3 \% \mathrm{CL}$ for 2 dof

Very important decay mode for Belle II

