Belle II status and prospects for flavor physics

Jing-Ge Shiu/NTU
On behalf of the Belle II collaboration
Belle II status and prospects for flavor physics

Outline

- SuperKEKB and Belle II
- Status and schedule
- Physics prospect
Belle II status and prospects for flavor physics

Outline

- SuperKEKB and Belle II
- Status and schedule
- Physics prospect
SuperKEKB @ Tsukuba, ~ 1.5 hours away from Tokyo
lake Kasumigaura (霞ヶ浦)
famous Mt. Tsukuba
LHC
27 km circumference
~100m underground
7000 ~ 14000 GeV

table

Lake Geneva
famous Mt. Jura
They are similar!!
at least geographically and geometrically.

LHC
27 km circumference
~100m underground
7000 ~ 14000 GeV

SuperKEKB
~3 km circumference
10~11 GeV
(7 GeV e- / 4 GeV e+)
What is Belle II's role in this LHC era?
Why Belle II

Last generation B factories achieved a great success in B (charm, τ) physics studies and explored possible new physics.

However, there are still remaining puzzles and open questions:
- How “standard” is the SM (where is the NP)?
- Those “dark” things …..
Why Belle II

Energy frontier
→ powerful in energy scale to search for new particles and physics. (LHC)

Precision/intensity frontier
→ focus on a certain energy range for precision measurements to search for anomalies from the SM and new physics from rare decays (SuperKEKB + Belle II)

complementary with each other
SuperKEKB: why not just keep running KEKB/Belle

founded in 2008, groundbreaking in 2011
peak luminosity 8×10^{35} cm$^{-2}$s$^{-1}$ (40 x KEKB)
→ nano beam with higher beam currents
Belle II: 50ab$^{-1}$ data (50 x Belle)
→ high precision measurements; rare decays
Belle II Collaboration

>700 members
101 institutions
Requirements for the Belle II detector
(critical issues at $L = 8 \times 10^{35}/\text{cm}^2/\text{s}$)

- Higher event rate
 ➔ higher trigger rate, DAQ, computing
- Higher background
 ➔ radiation damage ➔ BEAST2
 ➔ occupancy
 ➔ fake hits and pile-up noise
- $\beta\gamma$ reduced by a factor of 1.5

- Upgrade
 ➔ better vertexing/tracking
 ➢ pixel + silicon strip (VXD)
 ➢ new CDC larger volume smaller cell
 ➔ better particle identification
 ➔ faster readout electronics and computing
 ➔ faster and flexible trigger system
 ➢ z-vertex trigger to reduce background
Most sub-detectors will be ready in 2017.

ECL
- photon, electron
- CsI(Tl)
- waveform sampling

VXD
- vertexing
- PXD: 2 layers DEPFET
- SVD: 4 layers DSSD

CDC
- charged particle tracking
- track z-vertex trigger
- smaller cell size, long level arm
- He(50%)+C$_2$H$_6$ (50%)

1.5T solenoid

KLM
- Klong, muon
- RPC+scintillator (barrel)
- scintillator (end-caps)

TOP/RICH
- particle identification
- TOP(barrel): DIRC
- RICH(fwd): aerojel

e^- (7 GeV)

e^+ (4 GeV)

trigger rate ~ 20 kHz

GRID computing
Belle II status and prospects for flavor physics

Outline

- SuperKEKB and Belle II
- Status and schedule
- Physics prospect
Belle II roll-in

Phase 1: beam practice
BEAST2 phase 1
no collision
no Belle II
background study

Phase 2: beam collision
BEAST2 phase 2
no VXVD

Phase 3: increasing lumi.
full Belle II
physics run 1

now

CDC in

VXVD installation
(SVD+PXD)

keep running,
and running,
and running,
…..

Schedule in the coming years
Schedule in the coming years

- **Phase 1: beam practice**
 - BEAST2 phase 1
 - No collision
 - No inner detector
 - No CDC
 - No magnetic field

- **Phase 2: beam collision**
 - BEAST2 phase 2
 - No VXD
 - VXD installation (SVD+PXD)

- **Phase 3: full Belle II**
 - Physics run 1
 - ~ 6 years to reach target data statistics

~ 6 years to reach target data statistics

MR startup

MR renovation for phase 2 including installation of QCS and Belle II

w/ QCS w/o Belle II

w/ Belle II (no VXD)

w/ full Belle II

HEN start LE start

VXD installation

Reoptimized schedule

Goal of Belle II/SuperKEKB

Integrated luminosity (ab$^{-1}$)

Peak luminosity (cm$^{-2}$s$^{-1}$)

PHASE 1

PHASE 2

PHASE 3

SuperKEKB Goal

~ 6 years to reach target data statistics

time to open the other eye.
SuperKEKB/BEAST2 phase 1 operation

Feb.~Jun., 2016: **target beam energies/ lower-currents** without collision

Red: total beam current
Purple: vacuum pressure
Cyan: beam lifetime

![Graph showing beam current and other metrics over time with specific events marked.](image-url)
Phase 1,

Bea st 2

has paved the road for the beauty.

(~1 year ago)

beam BG/machine study
Phase 2, ring a Bell for a new era to come.

Beast2 with partial Belle II, some measurements possible.

early 2018 collision tuning partial Belle II (no vertexing)

➔ achieve 10^{34} /cm2/s (KEKB/Belle peak)
➔ stable run close to γ(4S) preferred
➔ PID not fully reliable
➔ Integrated luminosity \sim(20±20 fb$^{-1}$)

Important milestone for Belle II

early 2018 collision tuning partial Belle II (no vertexing)

2019 ~ full Belle II commissioning

50 ab$^{-1}$

8x1035/cm2/s

➔ high flavor tagging eff.
➔ good PID
➔ clean detector environment

full power of Belle II physics

beam bg/machine study

possible early measurements
Belle II roll-in (April 11, 2017)

Belle II in position now (VXD)
Belle II status and prospects for flavor physics

Outline

- SuperKEKB and Belle II
- Status and schedule
- Physics prospect
Belle II physics prospect

- **B physics**
 - precision measurements of CKM elements
 - rare B decays
 - other B decay physics, ...

- **Charm physics (Mixing, CPV in charm, rare charm decays, ...)**

- **τ physics (LFV, CPV, ...)**

- **Others**
 - bottomonium spectrum
 - exotics state (tetraquark, ...)
 - other new physics searching (Higgs BSM, dark sector, leptoquark, ...)

- advantage on decays with neutral particles in the final states.

more about Beyond the standard Model @Belle II and B2TiP, Y. Okada, May 3.
Belle II physics prospect – CKM

- does the unitary triangle really a triangle?
 current $\alpha + \beta + \gamma = (175 \pm 9)^\circ$ (PDG)
 \rightarrow Belle II expects to improve the precision
 $\beta \sim 0.3^\circ$, $\alpha \sim 1.0^\circ$, $\gamma \sim 1.5^\circ$
 (precision 5~10% \rightarrow 1~3%)

- precision measurements of $\sin(2\beta) = \sin(2\phi_1)$
 remains an important topic to check the consistency of the Unitary triangle and to search for new source of CPV
 e.g. $\Delta S = \sin(2\beta_{\phi K_s^0}) - \sin(2\beta_{J/\psi K_s^0})$
 \rightarrow with 50ab$^{-1}$ data, Belle II can reach 5σ
 even with a small deviation $\Delta S \sim 0.02$
Belle II physics prospect \(B \rightarrow D(\ast) \tau\nu \)

\[
R(D(\ast)) = \frac{\Gamma(B^0 \rightarrow D(\ast) \tau\nu)}{\Gamma(B^0 \rightarrow D(\ast) l\nu)}_{l=\mu,e}
\]

sensitive to H-b-c coupling
larger BF in the SM (~1%)
smaller theoretical uncertainty of R(D)
discrimination of W and H by differential distribution

new Belle measurement [hep-ex 1603.06711]
\[R(D^*) = 0.302 \pm 0.030 \text{(stat)} \pm 0.011 \text{(syst)} \ (13.8 \sigma) \]
Belle II physics prospect – charm physics

- B factories discovered the $D^0 - \overline{D}^0$ mixing.
 - Belle II will improve the measurements of the mixing parameters and look for CPV.
 - proper time resolution for D^0 decays ~ 0.14 ps

- Rare charm decays, e.g.
 - $D^0 \rightarrow \gamma\gamma$
 - predicted BF a few $x 10^{-8}$
 - Belle result $8.5x10^{-7} @ 90\%$CL
 (PRD 93, 051102(R), 2016; 832 fb$^{-1}$ data)
 - expected to reach $10^{-7} - 10^{-8}$
 (with full Belle II data)
Belle II physics prospect – tau LFV

LFV is suppressed in SM → a few models predict enhancements within Belle II's reach.

\[\tau \rightarrow \mu \gamma \]
main background from \(\text{ee} \rightarrow \mu \mu \gamma_{\text{ISR}} \)
reduce sensitivity by a factor \(\sim 7 \)

\[\tau \rightarrow \mu \mu \mu \]
very clean mode
reduce sensitivity by a factor of 50

possible reach by Belle II (50 ab\(^{-1}\)) \(< 10^{-9} < 10^{-10} \) → good to test NP

<table>
<thead>
<tr>
<th>Model</th>
<th>(B(\tau \rightarrow \mu \gamma))</th>
<th>(B(\tau \rightarrow \mu \mu \mu))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSUGRA+seesaw</td>
<td>(10^{-7})</td>
<td>(10^{-9})</td>
<td>PRD 66(2002) 115013</td>
</tr>
<tr>
<td>SUSY+SO(10)</td>
<td>(10^{-8})</td>
<td>(10^{-10})</td>
<td>PRD 68(2003) 033012</td>
</tr>
<tr>
<td>SM+seesaw</td>
<td>(10^{-9})</td>
<td>(10^{-10})</td>
<td>PRD 66(2002) 034008</td>
</tr>
<tr>
<td>Non-Universal Z'</td>
<td>(10^{-9})</td>
<td>(10^{-8})</td>
<td>PLB 547(2002) 252</td>
</tr>
<tr>
<td>SUSY+Higgs</td>
<td>(10^{-10})</td>
<td>(10^{-7})</td>
<td>PLB 566(2003) 217</td>
</tr>
</tbody>
</table>
Summary

● The SuperKEKB + Belle II will be ready for commissioning soon
 ➢ 40x higher instantaneous lumi.
 ➢ 50 ab$^{-1}$ data statistics.
 ➢ Belle → Belle II

● SuperKEKB first beam circulations in 2016
 ➢ Belle II roll-in in April
 ➢ prepare 1st collision in early 2018

● Physics commissioning with full Belle II in early 2019.
 ➢ precision measurements of CKM
 ➢ B, charm and τ physics
 ➢ exotics states, dark sector, light Higgs,

● A friendly competition and complementarity with other experiments
 (LHCb, BESIII), a new and exciting era to explore the physics frontier.
BACKUP
Luminosity of KEKB and SuperKEKB

<table>
<thead>
<tr>
<th></th>
<th>KEKB achieved</th>
<th>SuperKEKB nano-beam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LER</td>
<td>HER</td>
</tr>
<tr>
<td>E_{beam} (GeV)</td>
<td>3.5</td>
<td>8</td>
</tr>
<tr>
<td>I_{beam} (A)</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>β_y (mm)</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>luminosity ($cm^{-2}s^{-1}$)</td>
<td>2.1×10^{34}</td>
<td>8.0×10^{35}</td>
</tr>
</tbody>
</table>

$\beta y \sim 2/3$

factor 2

factor 20

factor 40

nano beams with high beam currents
low emittance 4.6 nm /3.2 nm

→ high intensity frontier
Belle II (top) compared with Belle (bottom)

SVD: 4 DSSD lyr → 2 DEPFET lyr + 4 DSSD lyr
CDC: small cell, long lever arm

ACC+TOF → TOP+A-RICH
ECL: waveform sampling, pure CsI for end-caps
KLM: RPC → Scintillator +SiPM (end-caps)
VXD = PXD + SVD

SuperKEKB: Nano beam option, 1 cm radius of beam pipe. Final focus quadrupole "intergrated" into vertex detector.

- "PXD"
 - 2 layer Si pixel detector (DEPFET technology)
 - (R = 1.4, 2.2 cm)
 - Monolithic sensor
 - Thickness 75 μm (!), pixel size ≈50 x 50 μm²
 - L = 12 cm

- "SVD"
 - 4 layer Si strip detector (DSSD)
 - (R = 3.8, 8.0, 11.5, 14.0 cm)
 - L = 60 cm

Significant improvement in z-vertex resolution.
Belle II PXD

<table>
<thead>
<tr>
<th>Occupancy</th>
<th>0.4 hits/μm²/s (3% max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation</td>
<td>2 Mrad/year</td>
</tr>
<tr>
<td></td>
<td>$2 \cdot 10^{12} 1$ MeV n_{eq} per year</td>
</tr>
<tr>
<td>Integration time</td>
<td>20 μs</td>
</tr>
<tr>
<td>Momentum range</td>
<td>Low p (50 MeV - 3 GeV)</td>
</tr>
<tr>
<td>Acceptance</td>
<td>17°-155°</td>
</tr>
<tr>
<td>Material budget</td>
<td>0.21% X_0 per layer</td>
</tr>
<tr>
<td>Resolution</td>
<td>15 μm (50x75 μm²)</td>
</tr>
</tbody>
</table>

- Impact parameter resolution (15 μm), dominated by multiple scattering mainly in BP → Pixel size (50 x 75 μm²)
- Lowest possible material budget (0.21% X_0/layer)
 - Ultra-transparent detectors
 - Lightweight mechanics and minimal services in physics acceptance
CDC

(central drift chamber)

Three important roles:
- Track reconstruction and momentum determination
- Particle identification via dE/dx
- Trigger for background rejection

Track Efficiency

Belie II Simulation (Preliminary)

$\sigma_{t\phi} = 100 \mu m$

$\sigma_z = 2 \text{ mm}$

200 ns dead time

$$\frac{\sigma_{p_t}}{p_t} \sim 0.3\% / \beta \oplus 0.1\% \cdot p_t [GeV/c]$$

$$\sigma \left(\frac{dE}{dx} \right)_{\text{MIP}} \sim 5\%$$
EM calorimeter: upgrade needed because of higher rates (electronics → waveform sampling) and radiation load (endcap, replace some fraction of crystals CsI(Tl) → pure CsI)

EM Calorimeter:
CsI(Tl), waveform sampling (barrel)
Pure CsI + waveform sampling (end-caps)

ECL cosmic ray test
(single high energy shower)
Particle Identification devices

Barrel PID: TOP (Time Of Propagation)

- MCP-PMT
- Focus mirror (sphere, r=7000)
- Backward Quartz radiator
- Forward Focusing mirror
- Small expansion block
- Hamamatsu MCP-PMT (measure t, x and y)

EndCap PID: aerogel RICH

- 200mm Cherenkov photon
- Aerogel radiator n~1.05
- Hamamatsu HAPD + new ASIC

First events in a partially instrumented sector of the ARICH.
Barrel PID: TOP (Time Of Propagation)

- Cherenkov ring imaging with **precise time measurement**.
- Uses internal reflection of Cherenkov ring images from quartz like the BaBar DIRC.
- Reconstruct Cherenkov angle from two hit coordinates and the time of propagation of the photon
 - Quartz radiator (2cm thick)
 - Photon detector (MCP-PMT)
 - Excellent time resolution ~ 40 ps
 - Single photon sensitivity in 1.5
EndCap PID: ARICH (aerogel RICH)

- Test Beam setup
- Aerogel
- Hamamatsu HAPDs
- Clear Cherenkov image observed
- Cherenkov angle distribution

6.6 σ π/K at 4GeV/c !

Peter Križan, Ljubljana
KLM \((K_L \text{ and muon detector}) \)

Interleaved with the iron plates of the flux return yoke

- **Barrel:**
 Belle RPCs reused
 Two inner layers replaced by scintillator strips
 Scintillator strips with WLS fibers
 Hamamatsu SiPM S10362

- **Endcap:**
 RPCs replaced with polystyrene scintillators
 99% geometrical acceptance. \(\sigma \sim 1 \text{ns} \)

(C. Marinas, DPG Münster 2017)
Belle II Level 1 trigger (CDC + ECL + TOP + KLM)

beam collision 254 MHz
nominal beam background rate ~10 MHz
interested physics event rate ~20 kHz
L1 max. latency 5 μs
L1 z-vertex trigger
L1 Global Reconstruction Logic

DAQ and analysis software
BASF2
(ROOT/C++/Python)
LHCb vs SuperKEKB

LHCb

- large samples (but low efficiencies)
- exclusive decays
- B_s oscillations
- B_c, bottom baryons
- $B_{s,d}^0 \rightarrow \mu\mu$
- $B \rightarrow J/\psi K_S$
- $D^0 \rightarrow K^+\pi^-, K^+K^-$

SuperKEKB

- all final states measurable, esp. those with photons, neutrinos
 - + inclusive decays
 - rare decays, such as
 - $B^+ \rightarrow l^+\nu, B^+ \rightarrow K^+\nu\bar{\nu}$
 - $b \rightarrow s\gamma, b \rightarrow s\ell^+\ell^-$
 - $B \rightarrow J/\psi\phi, \pi\pi, \rho\pi, \rho\rho, \pi\pi\pi$
 - $D^0\bar{D}^0$ mixing
 - $e^+e^- \rightarrow \tau^+\tau^-$

LHCb and SuperKEKB will run concurrently. largely complementary

(Several working groups organized to assess the possible physics topics)
Potential early physics topics

Phase 2&3 possible to collect 300 fb$^{-1}$ data

- Bottomonium
 - Improving measurements (e.g. $\eta_b(nS), h_b(nP)$)
 - Searching for “missing” particles (e.g. $\Upsilon(1D, 2D)$)

- BSM physics: dark photon/light Higgs

$\Upsilon(3S)$ spectrum

$\Upsilon(3S) \rightarrow \gamma A', A' \rightarrow \text{invisible or } (e^+e^- \text{ or } \mu^+\mu^-)$ (dark photon)

cross section $\propto \varepsilon^2 \alpha^2 / E_{CM}^2$

$A' \rightarrow (e^+e^- \text{ or } \mu^+\mu^-)$

$A' \rightarrow \text{invisible}$

Exclusion regions (colored) for ε as a function of A' mass, for various experiments and projections of Belle II.

$\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow \text{invisible}$

$\Upsilon(1D_2)$ has been measured by CLEO/BaBar.

$\Upsilon(1D_1), \Upsilon(1D_3), \Upsilon(2D)$ are not seen yet.