

The Belle II Experiment

C. Marinas University of Bonn

cmarinas@uni-bonn.de

- Flavor Physics Program
- The SuperKEKB Accelerator

The Belle II Detector

The Three Frontiers

• The Intensity Frontier: Search for rare new phenomena using *medium-energy ultrahigh-luminosity* machines

 $\frac{\text{Belle II data set}}{\text{Belle data set}} \sim 50$

 $\frac{\text{Belle II data set}}{\text{Belle data set}} \sim 50 \sim \frac{2009 \text{ BaBar data set}}{1999 \text{ CLEO data set}}$

• Paradigm shift: From 'Is the SM with CKM right?' to 'How is the SM wrong?'

- Larger data set will lead to an increase in sensitivity to higher mass scales just by simply redoing existing measurements
- Larger and more precise data sets always spurred new theoretical ideas
- In terms of NP reach this step is as big as going from LHC 8 TeV to LHC 14 TeV

cmarinas@uni-bonn.de

- The B factories Belle and BaBar ran from 1999 to 2010.
- They recorded over 1.5 ab^{-1} of data (1.25 \cdot 10⁹ BB).
- Both experiments provided the experimental confirmation that led to the 2008 Nobel prize

Super Flavor Factory

- Search for physics phenomena beyond SM in B, D and τ decays through precision measurements of the CKM sector and studies of rare or forbidden processes
- Many potential NP sources:
 - Flavor changing neutral currents
 - Lepton flavor violating decays
 - $B \rightarrow \tau$ tree level new physics
 - New sources of CPV

- 1. High luminosity (SuperKEKB)
- 2. High-resolution and large-coverage detector (Belle II)

Observable	SM theory	Current measurement	Belle II *
Observable		(early 2013)	(50 ab^{-1})
$S(B \rightarrow \phi K^0)$	0.68	0.56 ± 0.17	± 0.018
$S(B \rightarrow \eta' K^0)$	0.68	0.59 ± 0.07	± 0.011
α from $B \rightarrow \pi \pi$, $\rho \rho$		$\pm 5.4^{\circ}$	±1°
γ from $B \rightarrow DK$		±11°	$\pm 1.5^{\circ}$
$S(B \rightarrow K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.035
$S(B \rightarrow \rho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.07
$A_{CP}(B \rightarrow X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.005
A_{SL}^d	$-5 imes 10^{-4}$	-0.0049 ± 0.0038	± 0.001
$\mathcal{B}(B \rightarrow \tau \nu)$	$1.1 imes 10^{-4}$	$(1.64 \pm 0.34) \times 10^{-4}$	$\pm 3\%$
$\mathcal{B}(B \rightarrow \mu\nu)$	$4.7 imes 10^{-7}$	$< 1.0 \times 10^{-6}$	$\gg 5\sigma$
$\mathcal{B}(B \rightarrow X_s \gamma)$	$3.15 imes 10^{-4}$	$(3.55 \pm 0.26) \times 10^{-4}$	$\pm 6\%$
$\mathcal{B}(B \rightarrow K^{(*)}\nu\overline{\nu})$	$3.6 imes 10^{-6}$	$< 1.3 imes 10^{-5}$	$\pm 30\%$
$\mathcal{B}(B \rightarrow X_s \ell^+ \ell^-)$ $(1 < q^2 < 6 \text{GeV}^2)$	$1.6 imes 10^{-6}$	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$
$A_{\rm FB}(B^0 \rightarrow K^{*0}\ell^+\ell^-)$ zero crossing	7%	18%	5%
$ V_{ub} $ from $B \to \pi \ell^+ \nu~(q^2 > 16{\rm GeV^2})$	$9\% \to 2\%$	11%	2.1%

An Example: Leptonic Decays With Missing Energy universität

• New physics could significantly modify the SM branching ratio via the exchange of a new charged particle (charged Higgs)

An Example: Leptonic Decays With Missing Energy univer

- New physics could significantly modify the SM branching ratio via the exchange of a new charged particle (charged Higgs)
- Experimentally very clean but non-trivial measurement
 → Signal signature: Just a single charged track + nothing else

Example: B $\rightarrow \tau v$ Candidate Event in Belle Data

Strengths of e⁺e⁻ B factories: - Final states with neutral particles, in particular neutrinos - Inclusive measurements

The clean e⁺e⁻ environment makes this possible

cmarinas@uni-bonn.de

Linac

Mt. Tsukuba

SuperKEKB ring (HER+LER)

onn.de

Belle II detector

KEK - Tsukuba

Going For a Super B-Factory: SuperKEKB

Complete refurbishment to achieve x40 higher luminosity compared to KEKB

Phase 1 Results:

- First turns at SuperKEKB
- Vacuum scrubbing
- Initial background studies

- HER: 870 mA
- **Total beam current**
- LER: 1010 mA
 - ΠA
 - \rightarrow Program **completed**!

cmarinas@uni-bonn.de

The Belle II Detector

40 times higher luminosity implies

- Higher event rate
 - Higher trigger rate
 - Increased DAQ and computing requirements
- Higher background
 - Radiation damage
 - Occupancy
 - Fake hits and pile-up
- Changes in detector
 - $\beta\gamma$ reduced by factor 1.5
 - Improved vertexing needed
- Results in significant upgrade

→ Belle II

The Belle II Collaboration

Ready for physics run in 2018

cmarinas@uni-bonn.de

Vertex Detector (VXD)

$$e^+e^- \rightarrow \Upsilon(4s)$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

Precise vertexing essential to measure time dependent CP violation and mixing 29

cmarinas@uni-bonn.de

$$e^+e^- \rightarrow \Upsilon(4s) \rightarrow B\overline{B}$$
 $E_{cm} = 10.58 \text{ GeV}$

Precise vertexing essential to measure time dependent CP violation and mixing 30

cmarinas@uni-bonn.de

Vertex Detector: PXD and SVD

Vertex Detector: PXD and SVD

cmarinas@uni-bonn.de

Belle II VXD Requirements and Parameters

	Belle II PXD	
Occupancy	0.4 hits/µm²/s (3% max)	
Radiation	2 Mrad/year	
	2.10 ¹² 1 MeV n _{eq} per year	
Integration time	20 µs	
Momentum range	Low p (50 MeV - 3 GeV)	
Acceptance	17º-155º	
Material budget	0.21% X ₀ per layer	
Resolution	15 μm (50x75 μm²)	

- Impact parameter resolution (15 μ m), dominated by multiple scattering mainly in BP \rightarrow Pixel size (50 x 75 μ m²)
- Lowest possible material budget (0.21% X₀/layer)
 - Ultra-transparent detectors
 - Lightweight mechanics and minimal services in physics acceptance

The DEPFET Ladder

Belle II PXD Module

768x250 DEPFET Pixels

• 50x75 μm² pixel pitch

CONTRACTOR OF THE OWNER.

75 μm thickness

cmarinas@uni-bonn.de

Belle II SVD Module

Belle II Vertex Detector Beam Tests

PXD and SVD Combined Operation

Small sector of final PXD and SVD under electron beam and 1 T magnetic field

PXD Performance

cmarinas@uni-bonn.de

VXD Online Data Reduction

- Amount of data created by PXD is larger than the data generated by all other subdetectors
- Only reduced PXD data is written to tape
- Use tracks in SVD (and CDC) to find PXD regions of interest

Online Data Reduction

Central Drift Chamber (CDC)

Three important roles:

- Track reconstruction and momentum determination
- Particle identification via dE/dx
- Trigger for background rejection

	Belle II CDC
Number of layers	56
Total sense wires	14336
Gas	He:C ₂ H ₆ (1:1)
Sense wire	Au-W (ø30 μm)
Field wire	Al (ø126 μm)
Stereo and axial layers	

Three important roles:

- Track reconstruction and momentum determination
- Particle identification via dE/dx
- Trigger for background rejection

	Belle II CDC	
Number of layers	56	
Total sense wires	14336	
Gas	$He:C_2H_6(1:1)$	
Sense wire	Au-W (ø30 μm)	
Field wire	Al (ø126 μm)	
Stereo and axial layers		

Small cell chamber

Large tracking volume

250 mm

P

π

3.5

Three important roles:

- Track reconstruction and momentum determination
- Particle identification via dE/dx
- Trigger for background rejection

Central Drift Chamber (CDC)

Central Drift Chamber (CDC)

universität**bonn**

TOP will be used for PID in the barrel region

- When a charged particle passes through the quartz, it emits Cherenkov photons
- The Cherenkov angle, and hence detection time/position depends on the mass of particle (for given track parameters).

• Each TOP module contains two quartz bars (2.5 m x 0.45 m x 2 cm), mirror, and array of photodetectors.

32 (segmented 4x4) Micro-channel plate PMT Hamamatsu SL-10 MCP PMT They can operate in a magnetic field Gain = $2 \cdot 10^6$ Time resolution σ = 35 ps QE > 24% at 380 nm

Quartz property	Belle II TOP
Flatness	< 6.3 μm
Roughness	< 0.5 nm (RMS)
Bulk transmittance	> 98% /m
Surface reflectance	> 99.9% /reflection

TOP is operational

high index low index Particle identification in the forward endcap Radiator: Silica Aerogel ٠ n = 1.045 - 1.055Transmission length > 40 mm Photodetector Aerogel radiator Photon detection: Hybrid Avalanche Photo Detectors ٠ 420 units, 144 channels each, 5 mm pixelated Proximity focusing aerogel Gain = 7.10^{5} QE > 28% for n = 1.045[lad a⁸0.25 0.2 -- π 0.15 -- K 0.1 π 0.05 ĸ 3.5 4 4.1 Momentum [GeV] Charged particle 17 cm HAPD

Aerogel radiator n = 1.05

cmarinas@uni-bonn.de

ARICH:

- Aerogel sectors completed
- HAPDs being installed

Electromagnetic Calorimeter (ECL)

Electromagnetic Calorimeter (ECL)

E.M. Calorimeter to measure: Energy and angle of electrons/photons Luminosity

Need upgrade due to high backgrounds:

- Barrel:
 CsI(TI) crystals reused
 16.1 X₀ (30 cm)
 New electronics 2 MHz waveform sampling
- Endcaps: CsI(TI), crystals reused 16.1 X₀ (30 cm) Replacement with pure CsI in future (under study) Time constant (shaping) 30 ns

Electromagnetic Calorimeter (ECL)

ECL is operational

cmarinas@uni-bonn.de

K_L and Muon Systems (KLM)

cmarinas@uni-bonn.de

K_L and Muon Systems (KLM)

Large area thin planar detectors interleaved with the iron plates of the flux return yoke.

- Barrel:
 Belle RPCs reused
 Two inner layers replaced by scintillator strips (BKG)
 Scintillator strips with WLS fibers
 Hamamatsu SiPM S10362
- Endcap:

RPCs replaced with polystyrene scintillators 99% geometrical acceptance. $\sigma \sim 1$ ns

K_L and Muon Systems (KLM)

KLM is operational

- The SuperKEKB accelerator will be operating, for the first time, with QCS magnets
 First operation with focused beams
 First beam collisions
- The Belle II detector, minus the vertex detectors (VXD), will have rolled into the beam line (11.4.17)

Motivation for **BEAST II**:

- Machine commissioning
- Radiation safe environment for the VXD:
 - Two ladders PXD
 - Four ladders SVD
 - Dedicated radiation monitors FANGS, CLAWS, PLUME

cmarinas@uni-bonn.de

German Contribution

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Physics analysis
- Vertex detector
- BEAST
- Tracking
- Computing

Technical University of Munich

GÖTTINGEN

GEORG-AUGUST-UNIVERSITÄT

67

- The B-Factory experiments have played an pivotal role in understanding the SM and are a unique tool to search for New Physics
- Belle II will further explore these opportunities with a target integrated luminosity of 50 ab⁻¹
- Detector to start operation in early 2018 (Phase 2) and start taking physics data beginning 2019 (Phase 3)
- Stay tuned!

cmarinas@uni-bonn.de

