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Deutsche Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit zwei verschiedenen Themen, bei denen in Detek-
toren des Belle-II-Experiments verschiedene Teilchen voneinander getrennt werden. Zum
einen sollen im Pixeldetektor Cluster von langsamen Hadronen selektiert werden, um zu
verhindern, dass diese Daten verlorengehen, zum anderen wird eine allgemeine Methode zur
Identifizierung geladener Teilchen in den Tracking-Detektoren beschrieben. In beiden Fällen
wird der Energieverlust der Teilchen im Detektormaterial eine besondere Rolle spielen.

Ein Hauptziel der beiden B-Fabriken Belle und BaBar war die Messung der C P-Verletzung
im B-Meson-System, was 2001 beiden Experimenten gelang und für deren akkurate Vorhersa-
ge Makoto Kobayashi und Toshihide Maskawa 2008 den Physik-Nobelpreis erhielten. Zudem
eignen sich B-Fabriken aber auch für Präzisionsmessungen physikalischer Parameter und
die Suche nach Abweichungen vom Standardmodell der Teilchenphysik. Beide Experimente
wurden inzwischen abgeschlossen, zuletzt Belle im Jahr 2010. Neue B-Physik-Projekte sind
in Planung, die an ihre Erfolge anknüpfen sollen.

Eines dieser Projekte ist Belle II, ein Upgrade des Belle-Experiments am Beschleuniger
KEKB in Tsukuba, Japan. Für das Belle-II-Experiment wird die Luminosität des Beschleuni-
gers um den Faktor 40 erhöht, so dass nach dem voraussichtlichen Start des Experiments in
2016 im Verlauf eines Jahres eine höhere Luminosität aufgezeichnet werden soll als die Ge-
samtmenge, die von Belle geliefert wurde. Dies erlaubt wesentlich präzisere Messungen als sie
mit Belle oder BaBar möglich waren, erfordert aber auch einige Verbesserungen an Detektor
und Rekonstruktionssoftware. So wird für die Vertexrekonstruktion bei Belle II eine Kombina-
tion aus einem 4-lagigen Siliziumstreifendetektor (SVD) und einem 2-lagigen Pixeldetektor
verwendet, so dass eine sehr gute Vertex-Auflösung zu erwarten ist. Auch die Teilchenidenti-
fizierung wurde beträchtlich verbessert, hier wurden die Schwellen-Tscherenkov-Detektoren
durch RICH-Detektoren (Ring-Imaging Cherenkov) ersetzt, welche den Tscherenkov-Winkel
und damit die Geschwindigkeit der sie durchfliegenden Teilchen messen können.

Pixeldetektor-Datenreduktion

Aufgrund der sehr hohen Luminosität ist für das Belle-II-Experiment eine wesentlich höhere
Belastung durch Untergrundprozesse zu erwarten, die sich zum einen in einer möglicherwei-
se kurzen Lebensdauer der Detektorkomponenten (u. a. durch Absorption von Neutronen),
als auch einer hohen Datenmenge, insbesondere für die Tracking-Detektoren, niederschlägt.
Der zweilagige Pixeldetektor (PXD) befindet sich direkt außerhalb des Strahlrohrs und ist dem
Wechselwirkungspunkt somit am nächsten. Zusammen mit seiner mit 20µs recht langen
Integrationszeit – innerhalb derer ein Pixel Ladung ansammeln kann, bevor er ausgelesen
wird – macht ihn dies besonders anfällig für in Untergrundprozessen erzeugte Teilchen,
hauptsächlich durch Streuung innerhalb eines Strahlpakets sowie durch QED-Prozesse. Ak-
tuellen Simulationen zufolge werden durch diese Teilchen bei jedem Auslesen etwa 1 % der
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Pixel aktiv sein, was einer Datenmenge von 333 kB je Ereignis entspricht. Da dies auch nach
Berücksichtigung der Vorselektion durch Trigger die maximal zu speichernde Datenrate
überschreitet, ist eine Reduktion der Daten nötig. Bedenkt man, dass je Ereignis nur eine
Handvoll Pixel durch Nicht-Untergrund-Teilchen aktiviert werden, ist dies äquivalent zu
einer Reduktion des Untergrunds.

Hauptstrategie zur Untergrundreduktion ist die Extrapolation der Teilchenspuren aus
den weiter außen liegenden Tracking-Detektoren, die aufgrund ihrer Position und höheren
Ausleserate in der Lage sind, wesentlich sauberere Daten zu liefern. Diese Methode verwirft
sämtliche Pixel, die sich nicht in der Umgebung der extrapolierten Spuren befinden. Dies
reduziert die finale Datenmenge drastisch, hat allerdings den Nachteil, dass für Spuren nie-
derenergetischer Teilchen, welche möglicherweise nur wenige Treffer in anderen Detektoren
erzeugen, eventuell gar keine Pixeldaten zur Verfügung stehen. Insbesondere betrifft dies
Spuren von langsamen Pionen πs , welche beim Zerfall von D∗-Mesonen erzeugt werden.
Da die D∗-Masse nur wenig höher ist als die Summe der Massen seiner Zerfallsprodukte,
ergibt sich für das πs im Zerfall D∗(2010)±→π±

sD0
[→ K∓π±]

eine ausgesprochen geringe
kinetische Energie.

Da Tranversalimpulse pt < 60MeV nicht mehr ausreichen, um zuverlässig die vierte (und
letzte) Lage des Silizium-Vertex-Detektors (SVD) zu erreichen, würden für eine signifikante
Anzahl der langsamen Pionen – in Praxis etwa 15 % – keine Pixeldaten zur Verfügung stehen.
Da dies die Rekonstruktion der D∗-Mesonen sowie anderer Zerfälle negativ beeinflusst, wird
in Kapitel 5 eine Methode vorgestellt, um die diesen Teilchen zuzuordnenden Pixel zu retten.

Die Methode verwendet nur die Daten des Pixeldetektors und macht sich dabei zunut-
ze, dass die einzelnen Pixel zu Clustern zusammengefasst werden können. Mithilfe der
existierenden Simulationsprogramme für Untergrund- und Signalprozesse sowie der PXD-
Digitialisierungs- und Clustering-Software wurden für die von simulierten Teilchen erzeugten
Cluster verschiedene Variablen definiert. Diese enthalten unter anderem die Position und
Ausdehnung des Clusters in verschiedenen Dimensionen und die minimale, maximale und
gesamte Pixelladung innerhalb des Clusters. Diese dienen als Eingabe für ein künstliches neu-
ronales Netzwerk, welches darauf trainiert wird, zwischen Clustern von langsamen Pionen
und Untergrundteilchen (hochenergetische Elektronen) zu unterscheiden.

Die resultierende Trennung lässt sich bewerten durch den Anteil bewahrter Signalcluster
(Signaleffizienz) sowie den Anteil verworfener Untergrundcluster (Untergrundreduktion).
Trägt man diese Größen für verschiedene Schnitte auf die Netzwerk-Ausgabe übereinander
auf, erhält man einen Graphen wie in Abbildung 1.

Es ist zu erkennen, dass die Methode sehr gut zwischen langsamen Pionen und Unter-
grundteilchen unterscheidet, so dass Pixeldaten für die πs aus D∗-Zerfällen gerettet werden
können, ohne die Gesamtdatenmenge übermäßig zu erhöhen. Verschiedene Robustheitstests
bestätigen die Wirksamkeit der Methode auch wenn nur die Ladungsvariablen als Eingabe
verwendet werden, oder die einzelnen Pixelladungen breit verschmiert werden.

Dies sind gute Voraussetzungen dafür, das Netzwerk in der Praxis anzuwenden, auch wenn
die zu erwartende Genauigkeit der ausgelesenen Pixelladung noch nicht feststeht. Da das
Netzwerk hochperformant und möglichst nah am Pixeldetektor sein sollte, liegt es nahe, das
Netzwerk auf FPGAs (Field Programmable Gate Arrays) zu implementieren, welche auch für
die Tracking-Datenreduktion die Signalcluster auswählen.
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Abbildung 1.: Untergrundreduktion über der Signaleffizienz für verschiedene Schnitte auf die
Netzwerkausgabe, mit verschiedenen Farben für unterschiedliche Transversal-
impulse der zu selektierenden Pionen. Die rechte Seite zeigt einen Ausschnitt
in welchem beide Achsen bei 80 % beginnen.

Teilchenidentifizierung über den spezifischen Energieverlust

Das zweite Thema dieser Diplomarbeit ist die Teilchenidentifizierung mit den Trackingdetek-
toren, um so für jede Spur eine möglichst akkurate Vorhersage zu erhalten, ob es sich um
ein geladenes Pion, Kaon, Proton, Elektron oder Myon handelt. Dazu lässt sich der Energie-
verlust der Teilchen im Detektor verwenden, welcher für Teilchen verschiedener Masse und
selbem Impuls stark unterschiedlich sein kann. Mithilfe der durch die Tracking-Software
bereitgestellten Impulsmessung und den Ladungssignalen in den Detektoren, welche den
Energieverlust durch Ionisation je Detektorzelle wiederspiegeln, lassen sich so zweidimensio-
nale Wahrscheinlichkeitsdichtefunktionen konstruieren. Diese lassen sich anschließend mit
der Likelihood-Ratio-Methode mit Messwerten einer zu klassifizierenden Spur vergleichen.

Es stellt sich hierbei heraus, dass es vorteilhaft ist, neben den Daten der Driftkammer auch
die der Siliziumdetektoren, im Speziellen des SVD, zu verwenden, was zu einer starken Ver-
besserung für Impulse unterhalb von 1.5 GeV führt. Ebenfalls von Vorteil ist die Verwendung
der einzelnen Messwerte anstatt eines getrimmten Mittelwertes (truncated mean), welcher
einen Großteil der für eine Spur gesammelten Information verwirft.

Abbildung 2 zeigt die resultierende Trennung zwischen den obengenannten fünf Sorten
geladener Teilchen für eine Fehlklassifizierungsrate von 5 %. Es ist ersichtlich, dass sich
Elektronen über einen großen Impulsbereich beinahe eindeutig identifizieren lassen, aber
auch für Impulse unter 1 GeV ist eine Selektion teilweise weiterhin möglich. Für Pionen und
Kaonen ergibt sich von etwa 900 MeV bis zu niedrigsten Impulsen eine sehr hohe Effizienz
bei der gewünschten Reinheit. Lediglich für sehr niedrige Impulse um 100 MeV sinkt die
Effizienz für Kaonen, da ihre Anzahl dort stark abnimmt.
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Abbildung 2.: Selektionseffizienz über Teilchenimpuls für eine Klassifikation mit einzelnen
dE/dx-Messungen aus allen drei Tracking-Detektoren, für eine feste Reinheit
(Anteil korrekt klassifizierter Teilchen) von 95 %. Farben unterscheiden zwi-
schen Elektronen, Myonen, Pionen, Kaonen und Protonen.

Beim Vorgängerexperiment Belle wurde der spezifische Energieverlust lediglich in der Drift-
kammer bestimmt und die einzelnen dE/dx-Messwerte mittels des getrimmten Mittelwertes
zusammengefasst. Im Vergleich zu Klassifikationen welche die zusätzliche Information der
Einzelmessungen innerhalb der Likelihood-Funktion berücksichtigen, verschlechtert der
getrimmte Mittelwert die Selektion deutlich. Auch die Verwendung von Messungen des
spezifischen Energieverlustes in den Siliziumdetektoren verbessert die Selektion erheblich
gegenüber Klassifikationen, die lediglich Driftkammer-Messungen nutzen. Hauptsächlich
erklärt sich dies durch den in Silizium unterschiedlichen Energieverlust von Elektronen, die
sich dadurch auch in Impulsbereichen identifizieren lassen, in denen ihr Energieverlust in
der Driftkammer mit dem anderer Teilchen überschneidet. Dadurch ergeben sich auch für
andere Teilchen mit Impulsen unter 1 GeV höhere Selektionseffizienzen.
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1. Introduction

The visible universe around us is almost completely dominated by matter, and only a very
small amount of antimatter can be found in cosmic radiation. Since antimatter annihi-
lates in contact with matter, antimatter accumulations in space would also be quite visible
through radiation at the boundaries, and can thus be excluded. But what is the origin of this
asymmetry?

One of the necessary ingredients for the observed matter–antimatter asymmetry is the
violation of the so-called C P symmetry, or C P violation [1]. This symmetry was observed
to be broken in the decay of neutral kaons in 1964 [2], which means that the interactions
between matter and antimatter are not identical. However, the effect found in the kaon
system is relatively small and not nearly large enough to explain the observed absence of
antimatter. Still, measuring C P violating processes may help us further our understanding of
the observed asymmetry.

One other such process is the decay of neutral B mesons, which are bound states of a light
u or d quark and a heavy b quark, and can be produced in large quantities at B factories,
asymmetric electron–positron colliders operated at theΥ(4S) resonance, which, at 10.58 GeV,
is only a little heavier than twice the B0 or B± mass. Because of this, the Υ(4S), consisting
of a bb quark pair, decays mostly into B0B0 and B+B− pairs. Due to the asymmetric beam
energies, the created B mesons are not at rest with respect to the detector, but are boosted in
forward direction. Through reconstruction of decay vertices (vertexing), this allows accurate
measurements of the decay time of each B meson, which is vital for many measurements of
C P violation.

In this way, B factories, like PEP-II (BaBar experiment) in Stanford, USA, or KEKB (Belle
experiment) in Tsukuba, Japan, can produce and analyse large numbers of B decays. Among
the experiments’ achievements are the discovery of C P violation in the B system [3][4],
verifying the theory for which Makoto Kobayashi and Toshihide Maskawa received part of
the 2008 Nobel Prize in Physics [5], as well as the precise measurement of the parameters of
the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix [6]. Additionally, since the
b quark is the heaviest quark that can be found in bound states, higher order effects like
loop corrections can be more readily observed, which makes B physics very interesting to
probe for deviations from the standard model of particle physics. For example, a BaBar paper
recently submitted for publication shows a 3.4σ deviation for B → D(∗)τντ decays [7].

The KEKB collider holds the current world record in instantaneous luminosity [9], and
was able to outperform PEP-II in the integrated luminosity recorded (see Figure 1.1). Both
experiments have since been shut down, BaBar (at PEP-II) in 2008, Belle (at KEKB) in 2010.
As a replacement, new B factory experiments are being planned, like the Belle II experiment
in Tsukuba or possibly SuperB near Rome. Additionally, a different approach is to analyse B
decays at hadron colliders, the prime example of which is the LHCb experiment at the Large
Hadron Collider (LHC) in Geneva, with the first B decays recorded in 2010.
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1. Introduction

Figure 1.1.: Total integrated luminosity over time at the B factories KEKB (Belle) and PEP-II
(BaBar). At theΥ(4S) resonance, 711 fb−1 have been recorded by Belle, 433 fb−1

by BaBar. Adapted from [8].

The successor of the Belle experiment, Belle II, is currently in the final stages of planning
with some components already being built, and is slated to begin recording data in 2016.
For Belle II, the KEKB collider will be upgraded to about 40 times its former luminosity and
should be able to reach an integrated luminosity twice as high as KEKB’s within a year of data
taking (see Figure 1.2). This alone would allow many measurements with unprecedented
statistics and precision. Most parts of the Belle detector will be replaced, and new detectors
are added to, e. g., provide a better vertex resolution or improve the particle identification
(see Chapter 2).

A good particle identification system is important for physics analyses, and needs to
classify charged tracks into one of five particle types (pions, kaons, protons, electrons, and
muons), with a low rate of misidentifications. Since, in addition to the upgrade of the
detector components, the software framework was also rewritten [11], this is an opportunity
to improve upon Belle’s particle identification software. Chapter 6 will describe a likelihood
ratio-based method to identify charged particles using their energy deposition in the tracking
detectors. Different variations, such as using full likelihoods instead of truncated mean
values or including silicon detector information, will be evaluated.

As a side effect of the much higher luminosity, the Belle II detector will also have to cope
with a much higher background, e. g. from particles not from the Υ(4S) resonance. The
pixel detector (PXD), which is closest to the collision point, will be quite strongly affected by
this, with most of the data recorded being from non-BB events. If current estimations of the
amount of background are correct, this data will need to be significantly reduced before it can
be stored. This can be achieved by extrapolating particles from the outer detectors (where
less background is expected) into the PXD, and discarding pixel data that does not correspond
to one of the extrapolated tracks. This approach, however, is in danger of losing a significant
amount of low-energy particles that might not propagate far enough into other detectors to
allow a meaningful extrapolation. This would likely have a negative effect on physics analyses,
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Figure 1.2.: Projected integrated (top) and instantaneous (bottom) luminosity for the Super-
KEKB collider. One ab−1 equals 1000 fb−1. Adapted from [10].

e. g. in the above-mentioned analysis of B → D∗τντ decays, low-energy pions are produced
by the decay of the D∗ that need to be found for an accurate reconstruction. In Chapter 5,
a method will be presented that uses a neural network to distinguish pixel data created by
low-energy particles (especially pions) from those created by background processes using
only information from the pixel clusters themselves.
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2. The Belle II Detector

In this chapter, an overview of the components of the Belle II detector will be given, with
a special emphasis on both the tracking detectors, and the components used for particle
identification. Most of the information contained therein is from the Belle II Technical Design
Report [12]. The design of the detector components is not yet finalised, but the working
principles are unlikely to change.

2.1. Overview

For the Belle II experiment, the KEKB e+e− collider will be upgraded to achieve a luminosity of
8 ·1035 cm−2s−1. Since this will be a fortyfold increase compared to what was achieved for the
predecessor experiment, Belle, the upgraded collider will be appropriately called SuperKEKB.
This gain is to be implemented mostly through a smaller beam size, and, less so, through a
doubling of the beam current. To minimise the beam cross-section at the interaction point
(IP), focussing magnets have to be positioned fairly close to the IP. At SuperKEKB, this is
achieved using a relatively large collision angle of 83 mrad, which separates the beam pipes
more quickly. The rest of the detector is built around the interaction point, with a design that
takes into account the asymmetric beam energies (4.0 GeV on 7.0 GeV1). A cross-section of
the resulting geometry, as currently implemented in the Belle AnalysiS Framework 2 (basf2),
is shown in Figure 2.1.

To be able to reconstruct charged tracks, the three tracking detectors (PXD, SVD, and CDC)
are placed in the center of the detector, in a relatively homogeneous 1.5 T magnetic field.
Through measurements of the curvature of tracks, the central drift chamber (CDC) provides
accurate information about the momentum and charge of most tracks. The pixel and silicon
vertex detector (PXD, SVD) enclosed by the CDC are used to reconstruct decay vertices
and find low-momentum tracks. Further out, the TOP and ARICH detectors can identify
charged particles in the barrel and endcap part of the detector. They are surrounded by the
electromagnetic calorimeter (ECL), which is, among other things, used for the detection of
photons and identification of electrons. 2 The superconducting coil providing the magnetic
field is situated in the outermost part of the Belle II detector, and is enclosed by the KLM
detector, which can identify muons and K0

L, and also serves as a flux return.

In the following sections, these components will be described in more detail.

1The convention c = 1 is used, so both energies and momenta will be given in electron volt.
2The charge conjugate is always implied.
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2. The Belle II Detector
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2.2. Tracking detectors

2.2. Tracking detectors

2.2.1. PiXel Detector (PXD)

The pixel detector is a two-layered silicon sensor positioned directly outside the beam pipe,
built using DEPleted Field Effect Transistors (DEPFET). Its primary purpose is to provide high-
resolution data for the reconstruction of track vertices, which is vital for the determination of
B decay lengths.

To this end, two layers of pixel sensors (r = 14 mm and 22 mm) are placed directly outside
the beam pipe, occupying a total volume that is comparable to that of a small soft drink can.
This maximises the possible vertex resolution while reducing the required material budget.
Figure 2.2 shows the arrangement of the two layers and the position of the active detector
material.

Figure 2.2.: Schematic view of the pixel detector’s geometry, with areas containing DEPFET
pixels shown in gray. Adapted from [12, p. 77].

The individual sensors consist of a large number of DEPFET pixels that are thinned down to
about 75µm [13], which significantly reduces the effect of multiple scattering. The individual
pixels consist of a p-channel MOSFET or JFET with an internal gate being implanted through
doping, about 1µm beneath the transistor channel (see Figure 2.3). When a high voltage is
applied to the back side of the substrate, electron–hole pairs created by incident particles in
the bulk will be separated. Whereas the holes will drift toward the back contact, electrons
will collect in the potential minimum of the internal gate. Since the collected charge will
modulate the current in the p-channel between source and drain, the charge can be read
out—non-destructively—by measuring this current. The internal gate can afterwards be
cleared by applying a positive voltage to a nearby contact (n+ clear), which will remove the
collected electrons.

The pixels are arranged in a dense matrix, with a row-wise readout in which a gate voltage
is applied to all pixels in one row and the drain currents of all pixel columns are measured.
Afterwards, the accumulated charges are removed by applying a clear voltage. However,
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Figure 2.3.: Illustration of the design of a DEPFET pixel. Taken from [12, p. 79].

even with no charge accumulated in the internal gate of the pixel, some pedestal charge is
measured. These are caused by leak currents through the silicon, which tend to differ between
pixels and will be affected by the sustained radiation dosage. One possibility of removing
them is double-sampling, where the drain current is measured again after clearing any pixel
charges. Because of the additional time required to do so, single-sampling will be used
instead, where the average current in a pixel row (as measured through the normal readout)
is subtracted from the pixel current measurements. A pedestal correction for individual
pixels will then be performed off-line. [13]

Even with some parallelisation, the readout of the PXD’s total eight million pixels, arranged
in 1600 pixel rows, still takes about 20µs. As a result, a relatively large number of pixels in
each readout frame will be active, a problem that will be addressed in Chapter 5.

2.2.2. Silicon Vertex Detector (SVD)

The silicon vertex detector consists of four layers of double-sided silicon ladders with long
p-doted strips on one side, and perpendicular n-doted strips on the other. The SVD is
sandwiched between the pixel detector and the drift chamber, corresponding to inner and
outer radii of 38 mm and 140 mm. The geometric arrangement of the silicon vertex detector
is reproduced in Figure 2.4.

The SVD covers the full 17◦–150◦ acceptance of the Belle II detector. In the forward region,
the three outer layers are slanted toward smaller radii, resulting in wedge-shaped sensors
that reduce the material budget and improve the resolution for tracks with high pz .

Particles traversing the p–n junction create electron–hole pairs that are then separated by
an applied field and collected on the contacted strips. In the (rare) case of only one particle
hitting a ladder, its position can be reconstructed without ambiguity from the active strips on
both sides. However, with increasing number of active strips, so-called ghost hits are created,
as illustrated in Figure 2.5. This ambiguity can be resolved by using information from the
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Figure 2.4.: Configuration of the four SVD layers, with the two PXD layers shown directly
outside the beam pipe as seen from the side (top) and from the forward direction
(bottom). All dimensions in mm. Adapted from [12, p. 142]

other SVD layers, since ghost hits are unlikely to line up into tracks.
Compared to the PXD, the silicon vertex detector is further away from the interaction point

and will have a faster readout, making it less prone to background and helping with the
extrapolation of tracks from the drift chamber back into the pixel detector.

2.2.3. Central Drift Chamber (CDC)

Surrounding the SVD—and with an outer radius of 113 cm the largest tracking detector—
is the central drift chamber, consisting of 14,336 sense wires suspended in a 50% helium,
50% ethane gas volume. Charged particles passing through the gas lose some of their energy
due to collisions, producing electron–ion pairs. These are separated by an electrical field
applied through 42,240 field wires, with the electrons being increased in number by gas
amplification. [14] This works by accelerating the primary electrons in the electric field
around the sense wire (anode), providing them with the energy to ionise further gas atoms.
However, as this energy needs to be gained in between collisions with gas atoms, where
the energy would be dissipated, this avalanche effect only occurs in the close vicinity of
the anode. The electrons are collected by a sense wire, yielding a signal proportional to the
number of electrons originally created through ionisation by the track, and thus to the track’s
energy loss in the wire cell. The details of the processes through which particles can lose
energy in both the drift chamber and the silicon detectors are discussed in Section 3.1.

Further away from the sense wire, before gas amplification can take place, the acceleration
in the electric field is compensated by the collisions with the surrounding gas atoms, resulting
in a nearly constant drift speed. Using the time stamp of the signal and a reference t0, this
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Track hit

Ghost hit

Figure 2.5.: Creation of ghost hits: three particles create hits in an SVD sensor, with the
hits and activated strips shown in red. All intersections of active strips are hit
candidates, resulting in ghost hits (blue).

can be utilised to determine the drift time taken by the electrons on their way to the sense
wire. As the electrons quickly approach a constant final drift velocity, this is proportional to
the (minimal) distance between a particle’s path and the sense wire. This information can be
used by the tracking algorithms to easily achieve a resolution orders of magnitude smaller
than than the distance between wires. This is illustrated in Figure 2.6, which visualises the
drift lengths around CDC hits along a track.

Figure 2.6.: Illustration of a track in the drift chamber with drift lengths shown as dark circles
around each wire hit.

Passing through the CDC, a track will typically produce at least 56 wire hits. If all wires
were arranged in parallel, this would enable us to reconstruct the track only in the x–y
plane, z information would have to come from other detectors. This can be avoided by
adding layers with a non-zero angle between sense wires and the z axis, so-called stereo
layers. Layers with wires in parallel to the z axis are called axial layers. For the Belle II drift
chamber a configuration of alternating superlayers is used, where one superlayer consists of
six layers with the same orientation (eight for the innermost superlayer). An axial superlayer
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is thus followed by a stereo superlayer, followed by another axial superlayer. The next stereo
superlayer then has a negative stereo angle to optimise the z resolution. The arrangement of
the total 9 superlayers can be represented as AUAVAUAVA, with axial (A) and stereo superlayers
with different angles (U and V). A cross-section of the drift chamber can be seen in Figure 2.7,
which illustrates the arrangement of the superlayers. To reduce the impact of background,
expected to be strongest in the inner parts of the detector, the innermost superlayer is realised
with a more dense packing of wires. This so-called small-cell chamber consists of 8 layers
instead of the usual 6, and should have a lower occupancy than a superlayer with normal cell
configuration.

Figure 2.7.: Cross-section of the CDC wire configuration, with axial superlayers in black,
and stereo superlayers in violet and red for positive and negative stereo angles,
respectively. Adapted from [12, p. 204].

Overall, the central drift chamber provides a very cost-efficient instrumentation of a
large volume, and provides—in conjunction with the tracking algorithms—excellent spatial
resolution. It also has a fairly low dead time and was also designed for the purposes of particle
identification through specific energy loss (see Chapter 6).

2.3. Barrel PID: Time-Of-Propagation (TOP) counter

Situated immediately outside the central drift chamber, the time-of-propagation counter
aims to identify particles using a combination of time-of-flight and Cherenkov angle mea-
surements. This is achieved by having particles exceed the speed of light in the medium
of a quartz radiator, and measuring both the time of arrival and the angle of the produced
Cherenkov photons. Using a reference time t0, the time measurement can be used to ob-
tain the velocity of the particle; similarly, particles with different velocities βc will produce
photons with different angles θc (see Section 3.3). By utilising the internal reflection of the
photons in the quartz radiator and combining these two measurements into a single detector,
the TOP counter is very compact, with the quartz bar being only 2 cm thick (see Figure 2.8).

The photons are detected using an array of photomultipliers (PMTs), that resolve both x/y
and t dimensions. For the time measurements, the resolution was greatly improved, with
a PMT t resolution of below 40 ps and an expected resolution for the reference time t0 of
around 25 ps. For comparison, the performance of time-of-flight detectors has stagnated at
100 ps since the early 1990s.
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Figure 2.8.: Illustration of the internal reflection of Cherenkov photons in the TOP detector,
with pions and kaons of the same momentum producing photons with different
Cherenkov angles. Adapted from [12, p. 220].

2.4. Endcap PID: Aerogel Ring-Imaging Cherenkov (ARICH)
detector

For the endcap particle identification, a pure ring-imaging Cherenkov detector with aerogel
radiators is to be installed. The detector consists of two separate layers for the aerogel, where
Cherenkov photons are produced, and the photomultipliers, where they are detected, as can
also be seen in Figure 2.1. This allows the photons to form Cherenkov rings large enough to
be clearly separated by the PMTs, similar to the effect of the internal reflection in the TOP
counter’s quartz bars.

The ARICH is designed for a good pion/kaon separation over most of the momentum
spectrum, as well as the separation of the lighter π,µ and e for momenta below 1 GeV.

2.5. Electromagnetic Calorimeter (ECL)

Belle II’s electromagnetic calorimeter encloses both TOP and ARICH, and consists of 8736
scintillating CsI(Tl) (caesium iodide doped with thallium) crystals, weighing a total of 43 tons.
It has been designed mainly for the detection of photons and measurement of their position
and energy, as well as the identification of electrons, and—in conjunction with the KLM—for
the detection of K0

L.
Both photons and electrons produce electromagnetic cascades that are quite similar.

Photons produce secondary electrons either through pair production for high energetic
tracks, or through the photoelectric or Compton effect for photons with lower energies,
knocking away electrons from the atoms of the scintillator crystals. Primary or secondary
electrons in turn interact with the material, freeing electrons, radiating photons; or, in the
case of positrons, annihilating and again producing photons. The result is an electromagnetic
cascade that gradually deposits a large portion, or in many cases the entire energy of the
incidental photon or electron.

These cascades are accompanied by excitations of the scintillator material, which are
dissipated through low-energy (few eV) photons. These are then amplified and detected
through photomultipliers mounted at the end of each crystal. Since the number of photons
is directly dependent on the energy deposition (with some fluctuations), the PMT signal
provides a measurement of the absorbed particle’s energy.

Electrons are identified by assigning ECL clusters to charged tracks in the tracking detectors,
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L and muon (KLM) detector

clusters without a charged track are correspondingly presumed to have been created by a
photon. Since the only indication that an event contains photons is through ECL clusters,
a good position resolution can be important for physics analyses. This is achieved through
the high number of separate crystals, an approach that has already proven itself in the Belle
experiment. As a result, the two photons produced in the decay of π0 can be identified
separately, allowing positive identification.

Because of the good time resolution of the PMTs, the ECL readout is also used as a trigger
signal for the other detectors.

2.6. K0
L and muon (KLM) detector

Beyond the calorimeter and the superconducting coil responsible for the detector’s magnetic
field, the K-Long and Muon Detector is made up of a sandwich structure of 4.7 cm thick iron
plates with interleaved resistive plate chambers.

Resistive plate chambers (RPCs) consist of two planar glass sheets that act as high voltage
electrodes, separated by a thin gas volume. Particles traversing this volume create ion–
electron pairs that are accelerated by the electric field, producing a streamer between the two
electrodes. This streamer is conductive, and causes a voltage drop in the electrodes nearby,
that, because of the high resistance of glass, is not immediately evened out. This voltage drop
is then detected by pick-up strips placed on either side of the chamber. The pick-up strips are
a few centimeters wide and are arranged orthogonally on both sides, so the particle track can
be localised in z/φ for the barrel, and φ/θ for the endcap in addition to the layer information.

To be able to deal with the background radiation, especially neutrons, that would otherwise
reduce the detection efficiency of the RPCs, the inner two layers of the barrel KLM will instead
be instrumented with scintillators. [15]

To identify muons, the KLM utilises their high penetration power to distinguish them from
hadrons. For hadrons, the KLM and ECL combined provide 4.7 interaction lengths worth
of material, which means their energy will be quickly dissipated through hadronic showers.
Electrons, on the other hand, fall victim to the short radiation length in iron (1.7 cm [16]),
and are usually absorbed by the electromagnetic calorimeter.

Neutral K0
L mesons can also be identified, as they are able to produce clusters in both

ECL and KLM. To this end, ECL/KLM clusters are grouped and associated with charged
tracks found in the tracking detectors. Clusters without an accompanying charged track are
then taken as K0

L candidates. Because of the large fluctuations inherent in hadron shower
development, the clusters cannot be used to measure the K0

L energy, this would only be
possible with a full hadron calorimeter.
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3. Interactions of Charged Particles in Matter

This chapter will provide a brief overview of the interactions of charged particles with a
surrounding medium, with a special focus on the interactions most relevant to the operation
of the Belle II detector. Most significant for the tracking detectors is ionisation (and the
related excitation) of atoms, which also describes the creation of electron–hole pairs in the
silicon detectors. Since this energy loss can be measured through the charge signal provided
by both drift chamber and silicon detectors, it will play a decisive role in Chapters 5 and 6.
Bremsstrahlung is crucial for the understanding of the interaction of electrons in the detector,
especially in the electromagnetic calorimeter (ECL), and finally, Cherenkov radiation is the
underlying process used for Belle II’s dedicated particle identification detectors, the TOP and
ARICH.

3.1. Ionisation and excitation

Low-energy charged particles traversing a detector interact mainly with the atomic electrons
of the detector material, and can either excite them into more energetic states, or ionise them,
creating electron–ion pairs. Excited atoms can also create further ionisation by transferring
their energy to other atoms.

These processes depend strongly on the incident particle’s momentum, which determines
the maximum kinetic energy that can be transferred to the electrons of the medium. For
particles other than electrons (m0 > me ) and energies low enough to satisfy 2γme /m0 ¿ 1,
this maximum energy can be approximated as [14]

E max
kin = 2me c2β2γ2.

This expression only depends on βγ, not on the particle’s mass. For the next-lightest particle,
the muon, the latter condition can be written as γ¿ 424, which should hold for muons up to
a few GeV and all heavier particles with the same momentum.

The actual dependence of the energy loss on βγ is described by the Bethe–Bloch equation

−
〈

dE

dx

〉
= K z2 Z

A

1

β2

(
1

2
ln

2me c2β2γ2Tmax

I 2 −β2 − δ(βγ)

2

)
,

which is valid for values of βγ between about 0.1 and 1,000. [16] Here, z is the charge of
the incident particle (in multiples of the elementary charge), Z the atomic number of the
absorbing material, A the atomic mass in g mol−1 and K is a shorthand for 4πNAr 2

e me c2.
Tmax is the maximum possible energy transfer in a single collision (in MeV) and I the mean
excitation energy in eV. For muons, the Bethe–Bloch shape (with some additional effects for
lower and higher energies) is shown in Figure 3.1.

A peak in ionisation can be seen for very lowβγ, which quickly falls away for higher particle
energies. In practise, particles with a momentum coinciding with the ionisation peak either
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Figure 3.1.: dE/dx (stopping power) for muons in copper over βγ= p/(mµc). The solid curve
shows the total energy loss, with different components highlighted as dashed
lines. The arrow labelled µ− points to an effect that is specific to negatively
charged particles. Taken from [16].

fail to reach the tracking detectors due to insufficient momentum or are absorbed by the
beam pipe, so only the downward slope will be seen. Around βγ≈ 4, a minimum at very low
ionisation is reached; particles at this minimum are thus called minimum-ionising particles
(MIPs). Table 3.1 shows the energy loss through ionisation in the active materials of the
tracking detectors, which also provides a scale for the total energy loss expected in the silicon
detectors and the drift chamber. For higher energies, the energy loss increases again, leading
to the logarithmic relativistic rise.

Table 3.1.: Energy loss of minimum-ionising particles in the materials used in the tracking
detectors. Values in the last column are provided as energy per length, and thus
include material densities. Data from [16].

Material dE
dx

∣∣∣
min

/
MeV·cm2

g
dE
dx

∣∣∣
min

/
MeV
cm

Silicon (Si) 1.664 3.876
Helium (He) 1.937 3.222 ·10−4

Ethane (C2H6) 2.304 2.910 ·10−3

The function δ(βγ) describes the so-called density effect that suppresses the relativistic rise.
For relativistic incident particles, their transverse electric field is to some extent screened
by the surrounding atomic electrons, an effect that depends mostly on the density of the
detector material. [14] As a result, the probability of interactions is significantly reduced for
particles with higher momentum, creating the Fermi plateau also visible in Figure 3.1.

For solids, this effect is especially pronounced and almost entirely hides the relativistic
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rise. For example for 1 GeV electrons in silicon detectors, the energy loss through ionisation
is about the same as for pions or muons with the same momentum. In gases, the energy loss
is much higher, creating a quite visible band for electrons (see also Section 6.3).

It should again be emphasised that this formula for the energy loss through ionisation
only depends on the particle’s velocity through βγ. Consequently, if one plots the energy loss
for different particle types over their momentum p =βγmc, the same curve can be used to
describe those particles, only scaled by the particle mass m. The difference between these
curves forms the basis of the dE/dx particle identification method described in Chapter 6.

Strictly speaking, the assumption of heavy particles inherent in the Bethe–Bloch formula is
no longer fulfilled for electrons and ionisation through collision of incident electrons with the
atomic electrons needs to be handled separately. The overall deviation from the Bethe–Bloch
formula is on the order of 10–20 %. [14] The ionisation for positrons in turn differs from the
behaviour of both that for heavy particles and electrons; additionally, positrons will annihilate
with electrons in the detector medium, releasing additional energy. This effect, however, only
results in a slightly higher energy loss and is only visible at low particle energies. [16]

3.1.1. Energy loss distribution

The Bethe–Bloch formula just introduced describes the momentum-dependence of the mean
energy loss, with the actual measurements for dE/dx distributed around this value. This
distribution characterises the energy transferred to the electrons of the medium (gas, silicon)
and is dominated by very large losses that create so-called δ electrons (also δ rays or knock-
on electrons). [14] These energetic secondary electrons can then create further ionisation.
δ electrons are a common sight in bubble chamber pictures, as Figure 3.2 demonstrates.

Figure 3.2.: Tracks in a bubble chamber, with curling δ electrons visible along the horizontal
track. Adapted from [17].

In 1944 Lev Landau published a theoretical description of these processes and the resulting
energy loss distribution. [18] The so-called Landau distribution is strongly asymmetric and
exhibits a long tail corresponding to the aforementioned high energy transfers (see Figure 3.3).
As a result of these tails, the integrals defining the moments of the distribution (mean,
variance, etc.) diverge, and the associated quantities are thus undefined. [19] The Landau
distribution is commonly parametrised using the most probable value (MPV) and a scale
factor describing the width in x.
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Figure 3.3.: Plot of a normalised Landau distribution with MPV=5 and scale=1.

It should be noted that, while the central limit theorem cannot be applied to the Landau
distribution since neither mean nor variance have finite values [19], for very thick absorbers
the energy loss distribution will have less pronounced outliers [16], which merely indicates
that there is an upper bound on the energy transfer. For the amount of material traversed in
the tracking detectors, i. e. thin silicon sheets and a few meters of fairly thin gas, this effect
will not be visible.

The derivation by Landau allows infinite momentum transfers and thus cannot be an accu-
rate description of the actual distribution. Improved parametrisations have been suggested
by, e. g., Vavilov [20] and Bichsel [21].

3.2. Bremsstrahlung

For higher energies, radiative losses become more important, where the incident particles
interact with the Coulomb field of the nucleus and lose some of their energy through emission
of photons. The energy loss through bremsstrahlung is directly proportional to the energy
and inversely proportional to the square of the mass of the incident particle. [14] Because of
this, the effect of bremsstrahlung for heavy particles (i. e. other than electrons) can usually be
neglected. For the next-heaviest particle, the muon, with a mass of about 106 MeV ≈ 212me ,
bremsstrahlung is attenuated by a factor of (mµ/me )2 ≈ 45,000.

It is thus useful to consider the special case of electrons, where the energy loss through
bremsstrahlung can be written as:

−dE

dx
= E

X0

with the particle energy E and the material-specific radiation length for electrons X0. [14]
Solving this simple differential equation yields

E = E0e−x/X0 .
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Thus, after traversing one radiation length worth of material, the electron’s energy will be
reduced to 1/e of the original value. Additionally, the same X0 is also equal to 7/9 of the mean
free path for pair production of photons. [16] Consequently, both the photon and electron
part of electromagnetic showers can be described by a single quantity, which, together
with the linear dependence on the particle energy is also the underlying principle of the
energy-loss sampling used in calorimeters.

Since energy loss through bremsstrahlung only becomes significant for high energies, the
energy at which the loss through ionisation and bremsstrahlung are equal is commonly
called critical energy. For muons in copper, EµC ≈ 300GeV is also labelled in Figure 3.1. For
electrons, the critical energy is much lower, for example for the cesium iodide (CsI) crystals
used in the Belle II calorimeter, it is about 11.2 MeV for e− and 10.8 MeV for e+. [16]

3.3. Cherenkov radiation

If a charged particle exceeds the phase velocity of light in a medium, Cherenkov photons
are emitted. For slower particles, the dipoles both before and after the incident particle
align themselves toward it, generating a spherically symmetric field whose higher multipole
moments vanish. This is no longer the case once the particle exceeds the local speed of light:
only the dipoles behind the incident particle can be aligned, which results in a no longer
symmetric field shape that follows the particle. As a result, a cone-shaped electromagnetic
wave front extends behind the particle. [14]

θ
tβγ

tc
/n

Figure 3.4.: Illustration of emitted Cherenkov photons along the track of an incident particle
(black arrow), with the Cherenkov angle θ.

Here θ is called the Cherenkov angle that can be calculated as follows: In the same time
needed by the electromagnetic wave to travel a distance t vph, the incident particle covers a
distance tβc. Since the wave fronts created along the track must interfere constructively to
actually result in Cherenkov photons, the track, wave front and direction of emitted photons
must create the right triangle shown in Figure 3.4. Thus, using vp = c/n, the Cherenkov angle
can be calculated as:

cosθ = tc/n

tβc
= 1

nβ

Since the Cherenkov angle of the emitted photons in a certain material depends only on
the incident particle’s velocity, Cherenkov radiation is well suited to be used for particle
identification (in combination with momentum measurements), as is done for Belle II with
the TOP and ARICH detectors.
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4. Statistical Classification

Since both of the following chapters are concerned with the classification of data into different
categories, the underlying principles will be explained here.

Statistical classification is very closely related to hypothesis testing, where one wants to
quantify how well a given data set matches a hypothesis H0, as compared to an alternative
hypothesis H1. In general, this works by mapping a many-dimensional data set ~x onto a
scalar test statistic t (~x) in which the different hypotheses should have a sufficiently disparate
distribution. Cuts t > tc on the test statistic then should separate between the two hypotheses,
though in most cases, misclassifications will occur. These can be discerned into false positives,
where a data point has been selected as belonging to a hypothesis H0 but actually belongs
to a different hypothesis, and false negatives, where H0 has been falsely discarded by the
cut. This is illustrated by Figure 4.1, which shows normalised probability densities for two
hypotheses and their distribution in t . The two types of errors are shown for an arbitrary cut
tc , which separates the curves into regions of correct and false assignments. The fraction of
events selected by the cut t > tc where the hypothesis H0 was falsely discarded is called the
significance α, the fraction of data points belonging to the other hypothesis and mistakenly
selected is named β, with 1−β being called power.

ttc

t(x | H1)
t(x | H0)

β
α

Figure 4.1.: Distributions of a test statistic t for two hypotheses H0 and H1. For a given cut
t > tc for the selection of data points belonging to H0 the significance α and
power 1−β are shown.

For practical purposes, it may be more useful to define quantities that describe the data
set selected with t > tc . One can then define the efficiency as

ε= 1−α=
∫ ∞

tc

t (x|H0)dx,
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and the purity

p =
∫ ∞

tc
P0t (x|H0)dx∫ ∞

tc
(P0t (x|H0)+ (1−P0)t (x|H1))dx

,

where P0 is the prior probability for H0 [19]. These quantities for the efficiency and purity
of the selected data sample can be used to easily compare the effect of different cuts tc , but
can also serve as a quantification of how well a certain mapping of the data space to the test
statistic can separate the hypotheses H0 and H1 if considered for the entire range of possible
cuts.

For more than two hypotheses, a one-dimensional test statistic is usually not sufficient
and a higher-dimensional one will have to be used instead.

4.1. Likelihood ratio

For two hypotheses H0 and H1 a simple test statistic can be constructed using the conditional
probability L (~x|Hk ) of the data~x under the assumption that Hk is correct. This conditional
probability, or likelihood, can be compared with that for another hypothesis by considering
their ratio

t = L (~x|H0)

L (~x|H1)
.

The difference between the likelihood and a simple probability density function is that while
the latter is an analytical quantity, the former depends on the composition of the data sample
and is thus a random variable.

If the individual data points xi are uncorrelated, the likelihood can be written as

L (~x|Hk ) =∏
i

pi (xi |Hk ).

This becomes most useful when~x consists of independent measurements of the same physi-
cal quantity x: Then L becomes a product of repeated evaluations of the same probability
density function (PDF) p(x|Hk ), which makes the computation of this statistic remarkably
simple and illustrates its applicability to uncorrelated data.

The Neyman–Pearson lemma states that—provided the hypotheses do not contain free
parameters—this likelihood ratio test statistic provides the most powerful test (smallest β) at
a given significance level α, which is equivalent to the highest purity at a given efficiency [19].

While the test itself is simple, constructing the PDFs pi (xi |Hk ) can be more involved
and can be done using simulations (Monte Carlo) or data, if the correct hypothesis can be
determined through some other process. This should generally be done with an amount
of data high enough to avoid large statistical uncertainties on the created PDFs. When
correlations between some of the xi have to be taken into account, these PDFs will have to
be multi-dimensional (e. g. two-dimensional for repeated measurements of two correlated
variables). The required amount of data rises exponentially with the number of correlated
dimensions n. Because of this, classifications using the likelihood ratio method are usually
unsuitable for problems involving many correlated variables.
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4.2. Neural networks

4.2. Neural networks

4.2.1. Overview

Neural networks, on the other hand, deal especially well with correlations. In the biological
world, a neural network like the brain consists of neurons, which usually possess multiple
inputs (called dendrites), a cell body and a long protrusion, the axon, that eventually branches
out and connects to other neurons. The dendrites receive stimuli from other neurons that
may elicit the neutron’s activation (firing). When fired, an electrical pulse travels along the
axon to the nerve endings and, depending on the type of the connections, can either facilitate
or inhibit the firing of the connected neurons.

Artificial neural networks emulate this structure, with nodes and the connections between
them as their basic constituents. A node can have any number of inputs ik that are trans-
formed into an output o by adding the inputs and feeding them into a so-called activation
function g :

o = g

(∑
k

ik

)
.

Often the S-shaped sigmoid is used for the activation function, but other options, e. g. a
step function, exist. One can also add bias nodes with no input and an output set to a fixed
value. Connections link inputs and outputs of nodes together, and can carry an arbitrary
real-valued weight that the output is multiplied with before being handed to the next node.

In principle, these networks could become arbitrarily complicated, and might, for example,
include cycles. In practise, a network arranged in layers, with connections only from layer n
to layer n+1 is more useful and greatly reduces the computational costs. This type of network
is appropriately called feed-forward network.

o0

b0

x0 x4x1 x2 x3

w1 w2 w3 w4w0

Figure 4.2.: A single-layer perceptron with a single output node.

The simplest type of feed-forward network only has a single layer of nodes, which directly
provide the output, plus the input variables xi and a bias node b0. For a single output node,
this single-layer perceptron is illustrated in Figure 4.2. The output value of this simple network
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4. Statistical Classification

is given by

o0 = g

(
b0 +∑

k
wk xk

)
,

which, for a monotonous activation function g , corresponds to a linear test statistic, i. e.
the most complicated separation boundary that could be described by the network is a
hyperplane (Fisher’s discriminant) [19][22].

When another layer is added, the network becomes much more expressive, and it can
be shown that given enough nodes in the hidden layer, any continuous function can be
parametrised [23]. Such a two-layer perceptron is shown in Figure 4.3 and produces an
output of the form

o0 = g

(
b1 +∑

j
w1

j g

(
b0

j +
∑
k

w0
k j xk

))
,

where k iterates over the input nodes and j over the hidden nodes.

o0

x0 x4x1 x2 x3

Figure 4.3.: A two-layer perceptron with four hidden nodes and a single output node.

Since the nodes themselves are static, the entire information of the network is contained
in the connections between them and in their weights. Finding an appropriate set of weights
that produces the desired mapping of input to output is called training and involves present-
ing the input data to the network and adjusting the weights to reduce the deviation of the
output from the true value. One common training method for these layered networks is called
error back-propagation, which uses a gradient descent to minimise the output errors [22].
Simply stopping the training when the error on the data sample does not decrease further
can however lead to undesired results. Especially for relatively small samples, the network
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4.2. Neural networks

might then simply have learned the statistical fluctuations inherent in the data sample, an
effect called overtraining. This can be avoided by reducing the degrees of freedom of the
network (i. e. lowering the number of nodes) and/or dividing the data into a training set
presented to the network for back-propagation, and a validation set that is only used to track
the total error.

For the background reduction discussed in Chapter 5, a software package for neural
networks called NeuroBayes [24] will be used. In addition to the implementation of the
neural network itself, NeuroBayes uses sophisticated methods to improve the network’s
performance and robustness. Some of these methods, in so far as understanding them is
relevant to the study at hand, will be described in the following paragraphs.

4.2.2. Preprocessing

Before the input variables are fed into the network, they can be preprocessed to transform
them into the most suitable inputs for a neural network. As a first step, NeuroBayes flattens
real-valued variables to potentially avoid giving bins with low statistics undue weight. This
results in a histogram as shown in Figure 4.4, with an approximately equal number of entries
in each bin.

Afterwards, the purity NS/(NS +NB ) in each bin is considered and, if applicable, spline-
fitted, which again reduces the effect of statistical fluctuations (see Figure 4.5). This is
transformed into the final network input, as shown in Figure 4.6. The resulting distribution is
centered around 0 with a standard deviation of 1, with bins with a better signal–background
ratio being assigned higher values.

Finally, linear correlations between variables are determined, and the variables are linearly
combined into a new set of variables that is uncorrelated. This is not strictly necessary for
the training, as the network could learn the correlations, but simplifies the minimisation of
errors. In fact, non-linear correlations will still have to be learned by the network itself.

4.2.3. Pruning

During training, the input variables are ranked by their importance by individually removing
them from the network. Considering the sample statistics, variables are then permanently
removed from the network when their added significance is below a user-defined cut (e. g.
3σ). Similarly, if individual weights of network connections are statistically indistinguishable
from zero, they can be removed. Both methods are useful precautions against overtraining
by decreasing the network’s size, and consequently its degrees of freedom.

4.2.4. Network output

With a sigmoid activation function, as used by NeuroBayes, the final output will have values in
the interval [−1,1] and should, for a fully trained network, be linear in the per-bin purity [24].
That is, the signal fraction for a network output o should be given by

p = o +1

2
.

If the a priori distribution of the input data is the same as for the training data set, one can
thus directly interpret the output as a probability.
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Figure 4.4.: Flattened histogram created by NeuroBayes’ preprocessing for an input variable.
Different colours show signal and background. For the 1712 events in the yellow
box this variable is not defined, and they are treated separately (e. g. not included
in the histogram flattening).
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Figure 4.5.: Spline fit to the per-bin purity of the histogram shown in Figure 4.4.
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Figure 4.6.: Distribution of the final network input for the same variable, with a mean of 0
and a standard deviation of 1.
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5. Pixel Detector Background Reduction

Because of the higher luminosity and decreased beam cross section at SuperKEKB compared
to KEKB, the detectors of the Belle II experiment will have to cope with a much higher
background, possibly 20 times as much as for Belle. While all detectors will be affected
by this, the pixel detector with its relatively large integration time of 20µs will suffer from
an especially large event size. Assuming a worst case occupancy of 3 %—corresponding to
240,000 of the PXD’s total eight million pixels being active—and a size requirement of 4 bytes
for each active pixel, one arrives at an event size of 1 MB. This can be compared to only about
100 kB for all other detectors combined.

For a bandwidth of 1.2 GB/s to storage, the total event size must not exceed 200 kB for an
effective trigger rate of 6 kHz. This means that there must be some kind of data reduction
that can select pixel data from physics events and discard the rest. To avoid discarding PXD
data, a background reduction of 90 % would be necessary for the worst case. For Belle II, this
will be done by finding tracks in the silicon vertex detector and central drift chamber and
extrapolating them into the PXD. This will be described in 5.2.

In the scope of this diploma thesis, a different approach based on the analysis of individual
PXD clusters will be examined that addresses some of the shortcomings of the tracking-based
data reduction.

5.1. Backgrounds at Belle II

In the following paragraphs, a brief overview of the different types of backgrounds that are
expected at Belle II will be given.

Touschek effect: The Touschek effect is a form of intra-beam scattering, i. e. electrons or
positrons in one bunch interact with each other, resulting in particles with slightly
lower and higher momentum than the bunch average. It was first observed at the e+e−

storage ring AdA [25] and was found to have a strong dependency on the beam energy.
The effect is proportional to E−3 (with the beam energy E), so it is especially large for
low energy beams. [26] For this reason, SuperKEKB will use slightly less asymmetric
beam energies than KEKB, with 7.0 and 4.0 GeV instead of 8.0 and 3.5 GeV for the high
and low-energy rings, respectively.

The scattered electrons and positrons eventually escape the bunch and will hit the
beam pipe. Because of beam focussing and a smaller beam pipe cross-section, this
happens more often in the vicinity of the detector, where secondary particles may
produce background hits in the tracking detectors. These generally have a strong
asymmetry: Touschek particles will have a small incidence angle (originating from
somewhere along the beam pipe) and mostly go in backward direction, as the majority
originate in the low energy ring. This also extends to the secondary particles produced

27



5. Pixel Detector Background Reduction

in the beam pipe. The high energy ring will contribute only a very minor fraction of
total background events.

Two–photon QED processes: These are luminosity dependent QED processes in which a
positron and an electron interact via two photons and producing a new e+e− pair, as
shown in Figure 5.1.

γ

γ

e−

e+

e−

e+

e−

e+

Figure 5.1.: Feynman graph for a two–photon QED process.

The result is a background that originates from around the interaction point, with very
low-energy particles being produced.

Current simulations indicate that this will be the largest background for the pixel
detector at Belle II. [26] Additionally, the produced particles will look similar to physics
events, which makes them harder to pick out.

Beam–gas Coulomb scattering: While an ultra-high vacuum of less than 10−7 Pa is main-
tained around the interaction region, and a pressure < 10−6 in the rest of the beam
pipe [12], a few gas molecules will always remain. The beam particles can scatter
with the remaining gas, producing high energy particles from both the LER and HER.
This background only includes the first order, elastic scattering (Coulomb). Effects of
inelastic scattering are expected to be smaller and are consequently neglected.

There is currently no accurate simulation of this background available, but it is expected
to be similar in structure to the Touschek background.

Radiative Bhabha scattering: Bhabha scattering is an extremely common process at e+e−

colliders, where the input particles either annihilate into a γ, which then creates a new
electron–positron pair, or simply exchange momentum via one intermediary γ. In
some cases, an additional photon can be generated, whose daughter particles may
end up hitting the detector. Feynman graphs for Bhabha scattering with the radiated
photons highlighted are shown in Figure 5.2.

This process is luminosity dependent (normal Bhabha scattering is in fact often used
to monitor luminosity), and is also dependent on the geometry of the magnetic field.
It especially affects the outer detectors, where according to current studies the time
of propagation (TOP) counter would suffer from a background dose much higher
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Figure 5.2.: Example Feynman graphs for radiative Bhabha scattering.

than design specifications. The pixel detector however is relatively free from particles
originating from radiative Bhabha scattering, and most particles that do reach the PXD
are the result of backscattering in the outer detectors.

Recent studies of the aforementioned backgrounds for the PXD show the QED processes to
be the largest background, with 0.64 % occupancy in the first and 0.23 % in the second layer,
followed by the LER Touschek background with 0.12 % and 0.09 % in the first and second
layers, respectively. The other backgrounds do not contribute significantly to the occupancy,
with both beam–gas and radiative Bhabha scattering creating only a handful of hits per
readout frame. Consequently, only the Touschek and QED backgrounds will be used for the
following study, since the other processes do not contribute significantly to the total data
volume. The total occupancy in both PXD layers according to the simulation is thus less than
one per cent, which would necessitate a background reduction of only 70 %.

The simulation of the QED processes can be assumed to be fairly accurate, as these pro-
cesses are confined to the interaction point and do not depend on the detector geometry or
the shape of the magnetic fields in the beam pipe. The inverse holds for the other background
processes, where the B field geometry and shielding can have a large impact. Both are likely
to change in the future, in an effort to reduce the background rate suffered by the detectors,
which is necessary in particular for the TOP detector. One example for the effect of geometry
changes is the addition of vertical collimators, which reduced the estimated rate for LER
Touschek—at the time expected to be the largest background—from 0.89 to 0.16 GHz. [27]

Figure 5.3 shows the pixels activated during one readout frame on a typical sensor, illus-
trating the different asymmetries of the main background processes: Touschek particles tend
to produce longer clusters parallel to the z-axis, whereas particles from QED background
result in a somewhat larger variety of clusters. This amount of background per sensor has to
be compared with very few clusters from actual physics events (not shown here).

5.2. Background reduction via tracking

To reduce the PXD event size, the majority of which is caused by these backgrounds, one can
use data from the silicon vertex detector and the central drift chamber. Both detectors add
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Figure 5.3.: Simulated background hits during one readout frame (20µs) for a single PXD
sensor, separated into low energy ring Touschek and 2–photon QED background.

possibly much cleaner data—through a faster readout and their increased distance from the
interaction point—which can be used by the High Level Trigger (HLT) to reconstruct tracks
and extrapolate them into the pixel detector. The intersections of the tracks with the PXD
sensors then define regions of interest (ROI): pixels inside the ROI are assumed to be part
of a physics event, whereas all other pixels are assumed to originate from background and
discarded. It is also possible to use only part of the data, e. g. from the silicon vertex detector,
which simplifies the track finding. While the HLT track extrapolation with the full data will
be the dominant method, drift chamber data is disregarded in the following paragraphs.
However, as the tracks considered rarely produce CDC hits, the arguments are fairly general
and apply to both methods.

As the chance of random background hits in 4 layers lining up to create a track that looks
like it came from a physics event is rather small, this approach should lead to a very high
background reduction. The efficiency, i. e. the ratio of found tracks to the total number of
tracks, depends strongly on the tracking algorithm, but should be relatively high. However,
particles with low momentum may not reach all SVD layers and have a higher probability for
multiple scattering, which diminishes tracking efficiency.

Figure 5.4 shows the momentum distribution of pions from simulated BB events that are
stopped before the fourth SVD layer: plotting the transverse momentum pt of particles over
their relative z momentum cos(θ) = pz /p, one notices that a pt of 60 MeV may already be
insufficient to reach all SVD layers. Naively, one would expect the transverse momentum pt

(right plot) to be largely independent of the angle θ, since the sensors—with the exception
of the three outer SVD layers in forward direction—are parallel to the z axis. The large
dependence on cosθ can be explained by considering the traversed material for different
angles: for particles with θ = π

2 (pz = 0), the particle only crosses a fairly short section of beam
pipe, whereas the amount of traversed material increases for smaller or larger angles. While
the beam pipe consist of a fairly thin gold-coated beryllium (Z = 4) pipe, at the low particle
energies involved it can still stop particles with some efficiency. Thus, since particles with
θ ≈ π

2 have a lower total momentum p = pt /sinθ for the same pt , they are far more likely to
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5.2. Background reduction via tracking

be absorbed by the beam pipe.
This results in the shape seen for pt (cosθ), with particles in forward or backward direction

requiring less pt to reach the detector layers, and getting close to the 20 MeV required to
reach the 3rd SVD layer. The plot also shows a slight asymmetry resulting from the slanted
SVD parts in the forward direction, as well as particles of even high momenta being lost at
the outer limits of the acceptance in θ.
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Figure 5.4.: Total and transverse momentum of simulated pions that do not reach the last
SVD layer, over cosθ = pz /p. Colours indicate the outermost layer reached: violet
and blue for PXD layers 1 and 2; green, yellow and red for SVD layers 1, 2, and 3,
respectively.

One important process (BR(B → D∗(2010)±anything) ≈ 22.5% [16]) is the decay of a B
meson into a D∗, an orbitally excited D meson, which can then decay as D∗(2010)± →
π±

sD0
[→ K∓π±]

, where s stands for slow. For example, for many analyses it is useful to do a
full reconstruction of the decay products of one B meson (tag side B), which, as the B mesons
are always produced in pairs, also fixes the four-momentum of the other B. This greatly
simplifies the reconstruction of the so-called signal side B, which may also include neutrinos
in its decay. Because of the large branching fraction for the production of D∗(2010)±, it is vital
that the D∗ is correctly reconstructed. This entails finding and identifying both the D0 decay
products (a kaon and a pion), and the pion coming from the D∗ itself. This decay also can be
used to calibrate or verify particle identification algorithms, as described in Section 6.5.

Because of the small mass difference between the D∗(2010)± and the D0 of only 146 MeV,
the produced pion with a mass of 140 MeV will be of very low energy, earning it the name
slow pion, or π±

s . The resulting pt distribution for BB events is shown in Figure 5.5. It is
apparent that below 60 MeV pt , the majority of pions can be attributed to this one decay.
This, however, means that the data reduction scheme will lose some data from important
physics events: for the slow pions from D∗ decays, about 15 % will not reach the last SVD
layer. If the tracking algorithm then fails to find them, no PXD hits would be saved, and only
hits in the first three SVD layers would be available for later reconstruction. Of course, for
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many slow pions there is even less information available.
For the full reconstruction algorithm, this means that a fairly large portion of the D∗ decays

might be incorrectly reconstructed. If the slow pion is not found at all, its charge information
is also lost, which for example might result in a B0 being reconstructed as a B+. This would
negatively affect physics analyses by increasing the amount of background events.
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Figure 5.5.: Distribution of the transverse momentum of all pions in BB events and of only
pions from D∗ decays (slow pions), in black and red, respectively. Particles that
do not reach the tracking detectors are omitted.

5.3. Rescuing slow hadron hits via cluster analysis

A particle traversing the detector will in many cases hit more than one pixel. For this reason,
adjacent active pixels will be grouped into clusters. This can be used to further improve the
resolution, for example in the case of two active pixels, the particle’s position is not only
known to be between both pixels, but can be weighted according to the deposited charge.

In the Belle II analysis framework (basf2), the PXDClustering module finds adjacent
pixels in each sensor and groups them into clusters, which are used in the following analysis.
Because of different behaviours of the background and signal particles, one should be able
to distinguish them to some degree by looking at individual clusters. Variables particularly
suited for separating slow hadron clusters from background are given in the following, with
distributions for signal and background for some of them shown in Figure 5.6.

Charge: The charge depositions in the pixel detector are rarely caused by the primary par-
ticles produced directly in the background process, but rather from secondaries that
are created when the primary particles hit the beam pipe. For secondary electrons
or positrons that have enough transverse momentum to reach the PXD, the average
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5.3. Rescuing slow hadron hits via cluster analysis

momentum for particles from Touschek effect is about 57 MeV, and 390 MeV from
two–photon QED processes. For electrons, these are fairly high energies, making them
essentially minimum-ionising particles, since the relativistic rise for high momenta is
small in silicon sensors (see Section 3.1). One thus expects a relatively small charge
deposition from background, whereas pions or heavier hadrons with a momentum
below 100 MeV—corresponding to a βγ< 0.7 even for pions—should have an energy
loss many times as large. For a cluster, one can simply use the total charge, but the
minimal and maximal pixel charge, as well as the variance of pixel charges (or its
square root) in a cluster can be used.

The peaks visible in the total charge histogram in Figure 5.6 are caused by a cutoff at
25,000 electrons on the pixel charge, resulting in a large number of slow pions being
sorted into the corresponding bin, or into 50,000 if two pixels reach the highest value.
The effect of this cutoff on the network performance is discussed further in Section 5.5.

Position: Since background particles mostly originate from within both beam pipes, whilst
signal events are created with a boost in forward direction, a noticeable asymmetry in
the position of signal and background clusters is expected. In addition to the position
in θ and φ, the layer is also used, which is useful mostly for distinguishing background
components from each other.

Cluster length: Similar reasoning applies to the length of clusters. As already illustrated in
Figure 5.3, Touschek clusters tend to be elongated in z direction. Particles coming from
the interaction point, e. g. from physics events or 2–photon QED background, usually
produce more point-like clusters. However, depending on the particle’s momentum,
the track may curl in the magnetic field, producing longer clusters perpendicular to
the z-axis. One can thus define the cluster length in z and r/φ, the total length and
the number of pixels per cluster.

For background, simulations corresponding to one readout frame, with 23 % LER Touschek
and 77 % QED background, were used. The QED background was generated using the
KoralWInput module included in the Belle II software, Touschek background files were
provided by the collaboration. Other available backgrounds do not contribute significantly
to the detector’s occupancy and have been neglected. For the signal component, BB events
have been simulated using EvtGen with the standard decay file used by Belle, and clusters
from low-energy pions selected: The pion producing the cluster must have a pt < 65 MeV
and less than half of a cluster candidate’s charge must be assigned to secondary particles. In
the forward direction (θ < 30◦, corresponding to cosθ > 0.86), the SVD sensors are slanted
towards the beam pipe to increase acceptance. As this means that particles with lower
transverse momentum can reach the outer SVD layers, the selection criterion is lowered
to pt < 40 MeV. The effect of this changed signal definition can be seen in the distribution
of θ, corresponding to the z position, as shown in Figure 5.6. Below 30◦ ≈ 0.52rad, the
amount of signal suddenly drops to about half its former value, which is likely to influence
measurements of the performance of the network. However, even without this cut, variations
of the network performance for different angles are expected, since the distribution of signal
and background differs along θ (and also φ), for example a somewhat softer drop of similar
magnitude can be seen in backward direction.
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Figure 5.6.: Flattened distributions of a subset of cluster variables for slow hadrons (red) and
background clusters (black).
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5.3. Rescuing slow hadron hits via cluster analysis

This signal definition is then used together with the cluster variables defined above to
train a neural network, as described in Section 4.2. The employed neural network software,
NeuroBayes, will then determine correlations between variables and rank them by their
importance for the network’s performance.

Variables whose added significance is compatible within three sigma with fluctuations
from random chance are discarded. This helps in keeping the network from learning the
statistical fluctuations present in all data, which would reduce its performance when applied
to a different data set. In this case, the layer, cluster length and charge variance variables are
affected. For the charge variance and cluster length, this is probably caused by their high
correlation to other variables, i. e. their information content can easily be restored by using a
combination of other variables.

For binary classification, a single output node in the network combines all available
information and will serve as the final discriminator between signal and background clusters.
Figure 5.7 shows this network output for signal and background clusters. While a good
separation between both categories is already apparent, the next section will attempt to
quantify this by analysing the effect of different cuts on the output.
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Figure 5.7.: Distribution of the network output for signal (red) and background (black) clus-
ters.
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5. Pixel Detector Background Reduction

5.4. Results

To analyse the performance of the network, the most important quantities for a specific
network output cut are the background reduction and the signal efficiency, defined as:

background reduction = discarded background clusters

total background clusters
,

signal efficiency = kept signal clusters

total signal clusters
.

Statistical errors on both signal efficiency and background reduction are calculated using the
variance of the associated probability density function, as detailed in [28]. It should be noted
that since only the numerator changes slightly for adjacent network cuts, these errors will be
highly correlated for similar values of efficiency or background reduction.

As only a certain amount of data can be retained, the background reduction variable will be
used to determine the final network cut, which will depend on the actual detector occupancy
and the amount of bandwidth remaining after the tracking data reduction has selected
interesting clusters. An ideal network would retain most signal clusters while discarding a
high number of background clusters.

Figure 5.8 shows the background reduction over the signal efficiency for different cuts
on the network yields. While the background reduction is independent of the selected
signal clusters, the signal efficiency may vary for different types of signal. Here this is shown
for different transverse momenta pt of the slow hadrons: For all pt values, a background
reduction of over 90 % is possible with > 95% signal efficiency, with the highest efficiency
being reached for pions around 50 MeV pt .

One can also look at the performance of the network for different values of θ, as shown in
Figure 5.9. As is expected from the different distributions of signal and background clusters
in θ, the performance is not uniform, and drops significantly in forward direction. For θ < 30◦

this is most likely caused by our signal definition, which causes the fraction of signal clusters
to drop in this region.

5.5. Robustness tests

As the details of some components of the pixel detector electronics are not yet finalised,
including what the maximal charge of a pixel can be before the data type overflows, it is still
unclear what the precision of the data available to the network eventually will be. Similarly,
the background simulation is still incomplete: Synchrotron radiation is not yet included, and
not all background components have a physically accurate simulation. For this reason, some
tests of the network’s robustness will be described in this section.

As a general consideration, a changing background composition, with e. g. a larger amount
of background from radiative Bhabha scattering, should not have a large effect on the network.
Of all network variables, the pixel/cluster charges have the highest discrimination power,
meaning that the energy loss of slow hadrons is—even with some fluctuations—much larger
than that of practically minimally ionising electrons and positrons.

To verify that the network in fact does not rely overly on the highly background-dependent
distribution of the position and length of clusters, the network was retrained with only the
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Figure 5.8.: Background reduction over signal efficiency for different cuts on the network out-
put, colours indicate different transverse momenta of pions. The help distinguish
the curves, the second plots shows the same data with both axes fixed to values
larger than 80 %.
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5. Pixel Detector Background Reduction

charge variables as input. The only network inputs are then the minimal, maximal and total
charge, plus the charge variance in a cluster. Also tested was the effect of adding Gaussian
smearing to pixel charges, with the width set to 10 % of their value. The smearing was done
independently for training and evaluation of the network, and would thus make visible a
possible overtraining on the charge variables. As can be seen from Figure 5.10a, the network
is quite robust against a slightly lowered charge resolution; overtraining can also be ruled out.
Additional tests with a very generous smearing by 50 % show a signal efficiency decrease by
only 7 % for 90 % background reduction. Using only charge variables reduces the attainable
efficiency by a few per cent, so the performance should not be unduly dependent on the
background composition, which differs primarily in the position and direction of clusters.
Conversely, for a network that excludes the charge variables, only about 30 % background
rejection can be achieved with reasonable signal efficiencies.
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Figure 5.10.: Background reduction over signal efficiency for networks with some additional
limitations.

Some of the attributes of the readout electronics also can adversely affect the network’s
performance, possibly the most important one being the pixel charge cutoff. Most pixels
have charges below 10,000 electrons, with a peak at 1,000, so keeping the maximal pixel
charge relatively low would increase the energy resolution for most pixels, while not seeming
overly harmful. To distinguish slow hadrons from background, the network makes use of
the fact that those clusters tend to have pixels with more than 20,000 electrons deposited,
resulting in very high purities. This purity would be unfavourably affected by a too stringent
cutoff, as is shown in Figure 5.10b. For the network, a maximal pixel charge of 25,000 seems
reasonable, with only very minimal improvements gained by doubling this to 50,000.

Figure 5.11 shows the results for two networks where one of the two background com-
ponents has been removed entirely. This reveals some slight differences in how well these
backgrounds can be separated from the slow pions, but overall, the discrepancy is tiny.
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Figure 5.11.: Background reduction over signal efficiency, assuming only one of the consid-
ered backgrounds is present.

5.6. Summary and outlook

In summary, analysis of PXD clusters should be able to improve upon the tracking data
reduction by rescuing slow hadron clusters, with only a relatively small amount of informa-
tion. One of the main advantages is the ability of choosing a working point for the network
to match the available bandwidth. If the necessary background rejection is, as expected
from simulation, below the worst case of 90 %, one would profit from the increasing signal
efficiency, which quickly reaches values of 99 % and higher.

The network should be fairly robust against changes in the background composition
because of the minimally ionising background particles, though simulations of the effect
of synchrotron radiation in the PXD are still missing. It is also likely that the estimate for
beam–gas Coulomb scattering could be improved, as it currently is simulated using particles
shot from two single points. A more realistic simulation might increase the total background,
and is necessary for an accurate understanding of the network’s performance.

To actually make use of the network, it would need to run relatively close to the readout
and needs to be able to cope with the high (unreduced) data rate. Both objectives could be
accomplished by implementing the network in a Field Programmable Gate Array (FPGA),
which can be found on the ONSEN box slated to perform the selection of PXD clusters in
regions of interest (ROIs) for the tracking data reduction. As the ROI selector will remove
a sizable number of slow hadron clusters, the network will have to use the same raw data
as input. The network’s signal output would then be added to the ONSEN’s output, in
accordance with the total amount of available bandwidth to storage. This setup is unlikely to
require additional hardware, so it should be fairly low-cost. A schematic of the data flow in
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this setup is shown in Figure 5.12.
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Figure 5.12.: Visualisation of data flow from detector to storage.

Implementing the network itself on an FPGA requires mostly a few additions and multi-
plications, plus the transformation of the output of network nodes with a sigmoid function,
which could possibly be implemented as a lookup table. The decorrelation of variables—
requiring a matrix multiplication of the input variables with a transformation matrix to get
new decorrelated variables—as well as the flattening and other preprocessing of individ-
ual variables should likewise present no large problems, but could also be (at least in part)
omitted, as shown in Figure 5.13.
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Figure 5.13.: Background reduction over signal efficiency for the full network and a network
with no decorrelation and only flattening of variables.
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6. Particle Identification using dE/dx

The main objective of a particle identification (PID) system is to classify tracks into pions,
kaons, protons, electrons, or muons. As shown in Chapter 3, there exist a number of differing
interactions for these particles, allowing one to distinguish between these classes. In the
scope of this diploma thesis, the ionisation from particles in the tracking detectors will be
used for this purpose.

6.1. Used data sample

Within the Belle II software framework [11], two basic strategies for the generation of particles
exist. One option is to just shoot particles of various types into the detector at different
momenta, which can be done using the aptly named ParticleGun module. A more realistic
approach is to simulate the decay products of theΥ(4S) resonance produced at B factories.
To this end, B0B0 and B+B− pairs are created using EvtGen [29], an event generator built for
the accurate simulation of B decays. The subsequent generic decays are generated using
the standard decay file used by the Belle experiment, and should reasonably reflect the
particle decays at a B factory. Afterwards, PXD, SVD, and CDC hits are assigned to the Monte
Carlo particle they were created by and stored in a track candidate. Realistic track finding
is for the moment not used, because in its current state it only works for the drift chamber,
and has issues with curling low-momentum tracks. The track candidate is then processed
with GENFIT [30], the track fitting toolkit used by Belle II, resulting in track objects which
include information about the tracks reconstructed momentum and path. The generated
data sample corresponds to 125,000 BB events, with a total of around 958,000 reconstructed
particle tracks.

This produces a more realistic distribution of the particles, with pions clearly dominating
over a large momentum range, as can be seen in Figure 6.1. Kaons also contribute a sizeable
fraction of tracks, mostly below 2 GeV, whereas for higher momenta muons and electrons
make up almost half of the sample. At around 1 GeV, a few per cent of the whole sample are
protons. There is an additional very small contribution from hyperons, which are baryons
with strangeness, amounting to about 4 per mill; this component is neglected. The absolute
numbers also show that most particles have a momentum around 500 MeV, which quickly di-
minishes for higher momenta. The particle identification will be evaluated in the momentum
range from 0 to 3 GeV, where almost all particles can be found.

Tracks with a transverse momentum of around 250 MeV and curved by the 1.5 T magnetic
field have a diameter equal to the outer radius of the central drift chamber. In the used
version of the track fitting software, this seems to cause problems, since tracks graze the
outer cells of the drift chamber and may be harder to fit to the now larger drift cylinders. As
a result, the track fitting efficiency drops for momenta from around 250–420 MeV, causing
the double-peak structure seen on the left side. Additionally, the track fitting efficiency also
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6. Particle Identification using dE/dx

decreases for low momenta, but in both cases, improvements are expected in the near future.
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Figure 6.1.: Stacked momentum distributions of the reconstructed tracks by particle type,
in absolute and relative numbers. Colours denote, from top to bottom, pions,
kaons, electrons, muons, and protons.

6.2. Reconstructing dE/dx via track information

As described in Chapter 3, the energy loss in the detector creates a corresponding charge
signal, which will be available for each tracking detector hit. However, the ionisation is
proportional to the traversed distance in the detector medium, so the charge divided by the
distance is used instead. Although this is not equal to the specific energy loss, they are related
by a detector-dependent constant. In the following, the expression dE/dx will be used to
refer to both quantities.

Calculating dE/dx requires reconstructing the traversed length of detector medium, to
which end information about the tracks path and detector geometry needs to be combined.
Both position and momentum at each hit are available through the track representation
of fitted tracks. As the track representation uses a rather time-consuming Runge–Kutta
algorithm to extrapolate the track to each hit, taking into account the particle’s interaction
with the detector material, it may be worthwhile to take the track parameters at the origin
and assume and ideal helical track instead. This is discussed in Section 6.4.4.

The charge information for each hit is provided by the hit classes assigned (directly or in-
directly) to the track: PXDClusters, SVDTrueHits, and CDCHits. The PXDClusters include
charge digitisation performed using the PXDDigitizer module, which, among other things,
simulates the drift of the collected charge through the silicon. A digitisation module for the
drift chamber is available, but does not provide charge digitisation, whilst for the SVD, no
tested digitisation is available.

For the silicon detectors, the track’s momentum at the hit position is used to calculate
the approximate angle φ between the track and the sensor’s normal vector. The traversed
distance in the detector medium where charge can be accumulated is then equal to s = d

cosφ ,

with the sensor thickness d . As this diverges for extremely flat incidence angles (φ ≈ π
2 ),

values of s are limited to the width of the sensor. This approximates the track as a straight
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6.2. Reconstructing dE/dx via track information

line in each sensor, which is for most cases accurate, and also assumes at most one hit per
sensor. Multiple hits per layer, e. g. from overlapping windmill structure, or curling tracks
reaching the same sensor twice have no negative impact on the distance reconstruction.

sd

Figure 6.2.: Illustration of the path of a track and the calculated distance s in a silicon sensor.

For the drift chamber, the traversed distance for a hit is less well defined, as practically
the whole volume of the CDC is active medium. While it is possible to divide the CDC into
block-shaped cells, there is no guarantee that all cells crossed by a track will also contain a hit.
For this reason, a different construction will be used that aims to avoid this problem: When
a track traverses a layer, all hit charges in this layer assigned to the track are summed. The
distance is then calculated as the straight line distance to the next layer, using the momentum
vector of the track, averaged over the included hits.

This also works for curling tracks, provided the hits are sorted by their position along the
track, as only consecutive hits in one layer will be grouped into a single charge/distance
measurement. As the distance diverges at the point a track returns to a lower layer, it it limited
to a maximum of the distance between consecutive hits in this layer. While this introduces
some error at the boundaries to the lower layer, this is unlikely to occur often. The resulting
path approximation can be seen in Figure 6.3, where the charges of adjacent hits between
layer boundaries are summed and divided by the length of the corresponding straight line
segment.

Figure 6.3.: Illustration of the path of a track in the drift chamber, with active wires and
approximated distances in red. Dashed lines show layer boundaries.
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6.3. Likelihood ratio

As explained in Chapter 3, the reconstructed dE/dx values follow an approximate Landau
distribution. If one wants to combine these individual measurements into a single value, a
simple arithmetic mean will not suffice, as the mean of a Landau distribution is undefined.
To avoid giving undue influence to values in the distribution’s tail, one can instead use a trun-
cated mean, where a fixed percentage of the highest and/or lowest values are discarded before
the mean is calculated. This results in a high robustness against outliers in a distribution and
is commonly used when estimating dE/dx values for a track. [14, p. 217]

For these measurements to be useful for the purpose of particle identification (PID), they
need to be combined with an estimate of the track’s momentum. In this case, the track’s
momentum at the origin is provided by GENFIT. The effect of energy losses on the momentum
is usually small, and thus neglected.

(a) SVD (b) CDC

Figure 6.4.: Scatter plot of the truncated mean of dE/dx values (lowest 5 % and highest 25 %
removed) over the track momentum for SVD and CDC. Colours denote electrons,
muons, pions, kaons, and protons.

In Figure 6.4 the truncated mean of all dE/dx values for a track in one detector is plotted
over the track’s reconstructed momentum for the silicon vertex detector and the central
drift chamber. The corresponding data for the pixel detector has been omitted because
the particle behaviour is identical in both silicon detectors and with the PXD’s two layers
there is not enough data to build a meaningful truncated mean. For the truncated mean
used in the plots, the lowest 5 % and the highest 25 % of data points were discarded, and
the average of the remaining data was taken. This helps suppress the outliers inherent in
the individual dE/dx measurements. While it is possible and quite common to use the
truncated mean for PID classifications, the truncated mean, at least in theory, discards a lot
of information that might be useful for a classification, producing one value from around 50
dE/dx measurements on average. Because of this, a classification that uses the information
contained in the individual measurements will be considered for this thesis. Differences in
performance to the approach using a truncated mean are discussed in Section 6.4.2.
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The plots clearly show different behaviour for different particle types: the mass hierarchy
of the hadrons (pions, kaons, and protons) is reflected by the position of the rise in energy
loss for low momenta. As explained in Section 3.1, the relativistic rise of the energy loss is
suppressed by the density effect in silicon, resulting in flat curves once the particle reaches
the threshold for minimum-ionising particles. As a result, electrons in the PXD and SVD
show about the same energy loss as muons, because even with their much higher βγ >
100, corresponding to 10 GeV muons, the loss from ionisation is not significantly higher.
The cluster of measurements in the SVD circled in red with a dE/dx about half of that for
minimum-ionising particles is caused by more particles entering the sensor with an angle φ
or θ between the track and the sensor normal of almost π

2 at low momentum. This translates
to a reconstructed distance many times larger than the thickness of the sensor, which is no
longer accurate.

It is evident from looking at these dE/dx curves that at low momenta a good separation
between the different hadrons should be possible. Additionally, one can expect a good
performance for electrons over almost the entire momentum range, particularly if both
silicon and drift chamber measurements are used. To actually make use of these distributions
for classification, a likelihood ratio method as described in Section 4.1 will be used. For this,
one needs to build a likelihood function L for each particle type hypothesis m:

Lm

(
dE

dx
, p

)
=∏

i
pd

m

((
dE

dx

)d

i
, p

)
, m =π,K,e,µ,p, d = PXD, SVD, CDC

Here i loops over all dE/dx values assigned to the track, pd
m is the two-dimensional proba-

bility density function (PDF) for the (dE/dx, p) pair. It should be noted that pm is detector-
specific, as the dE/dx values vary greatly between the different subdetectors. Because of the
small individual factors involved and the limited range of floating point numbers, the product
is handled as an addition of log-likelihoods, which should avoid the numerical inaccuracies.

In Section 4.1 likelihoods for two hypotheses H0 and H1 were combined into a test statistic
useful for distinguishing them from each other by taking the ratio R = L0/L1. For five
mutually exclusive hypotheses that need to be combined, pairwise likelihood ratios like these
are not very useful. Instead, one can use the sum of the likelihoods for all hypotheses in
the denominator, including the one already in the numerator. Of course, the considered
hypotheses are not all equally likely, and differ in their momentum distribution (cf. Figure 6.1).
This is taken into account by multiplying the likelihood Lm with a momentum prior Pm(p),
which is normalised so that

∑
m Pm(p) = 1 for all values of p.

Rm

(
dE

dx
, p

)
=

Pm(p)Lm

(
dE
dx , p

)
∑

k Pk (p)Lk

(
dE
dx , p

)
This test statistic has the advantage of corresponding directly to the probability of a track

being of a certain type m, assuming the PDFs are accurate.
The two-dimensional probability density functions pm(dE/dx, p) are constructed directly

from the Monte Carlo sample as template PDFs, which are simple histograms, using a rather
fine binning of 100 × 100 bins to ensure a sufficiently high resolution in areas where the
dE/dx measurements of some particles overlap. While the histograms have a high total
number of entries, e. g. about three million for the pion histogram for the SVD, most entries
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can be found in a rather narrow band around the theoretical value given by the Bethe–Bloch
equation. To avoid giving undue influence to bins with a very low number of entries (i. e.
outliers), bins with less than four entries are discarded. When the PDF is later evaluated in
a bin that is empty, a very low probability is taken instead of zero (10−5). These somewhat
arbitrary changes to the PDFs give an impression of the extent of the statistical uncertainties
involved in the particle identification: The modifications mostly affect the high momentum
region above 2 GeV, where the number of particles drops off rapidly (only about 1.6 % of all
particles have a momentum that high). In other momentum regions, no significant changes
are observed.

To build a correct test statistic, it is vitally important that the PDFs are correctly normalised.
Since the momentum distribution of particles is already included in Rm through the momen-
tum prior, this will be done independently for each momentum bin. Then, for each particle
type and each detector, the content of every dE/dx bin will be divided by the number of all
entries with this particle type in the current momentum bin.

6.4. Evaluation

To evaluate the performance of the resulting classification, purity–efficiency curves can be
used. For each cut c on the test statistic Rm , these quantities are defined as

puritym(c) = particles with Rm > c of type m

particles with Rm > c
,

efficiencym(c) = particles with Rm > c of type m

particles of type m
.

As before, statistical uncertainties are calculated according to [28].
Because of the variations in the possible separation by momentum, the purity and ef-

ficiency are determined using only particles in a small momentum range, as is shown in
Figure 6.5 for momenta p just below 1 GeV. All curves show that there is a trade-off between
the purity of the selected sample and the corresponding efficiency: users of the particle
identification have to select a working point on each curve that yields a purity and efficiency
sufficient for the purposes of their analysis. In general, purity–efficiency curves should be
monotonous, i. e. a higher efficiency should mean worse (or at best, equal) purity for the
selection.

In the example, the purity–efficiency curves for both protons and electrons show a very
good separation, whereas for pions and kaons it is not possible to simultaneously achieve
both high efficiencies and purities. This can be understood by comparing with the region
around 0.9 GeV in Figure 6.4, where pions and muons almost entirely overlap each other,
whereas some kaons can be seen as clearly separate. For muons, any selection with reason-
able purity requires sacrificing most of them, which is typical due to their pion-like energy
loss and their low rate. Protons and electrons, on the other hand, show a much higher energy
loss in this momentum region and are easily separated from the other particles. Adding
information from the silicon detector, as was done here, electrons and kaons can also be
distinguished in this momentum region. For efficiencies near 1, the purity reflects the a priori
probability, i. e. the fraction of all particles that are of the considered type. This explains why
the electron and proton curves start at significantly lower purities than pions or kaons.
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Figure 6.5.: Example purity–efficiency plot for tracks with p in [860 MeV, 940 MeV], using
information from individual PXD, SVD, and CDC hits. Colours denote electrons,
muons, pions, kaons, and protons.

To show the variations for different momenta explicitly, it makes sense to fix the purity to
some value, and plot the efficiency over the momentum. This representation hides most of
the information contained in the individual purity–efficiency plots, but can be used to easily
compare the performance of the separation for different particle types and momenta. In
momentum regions where the attainable purity drops below the requirement, the efficiency
is zero. This indicates a bad separation, but does not mean there is no information in the
sample. Figure 6.6 demonstrates this for the same classification already shown in Figure 6.5:
for electrons above 1 GeV, efficiencies above 90 % are reached, for lower momenta this is
reduced by the overlap with pions. The efficiency for pions and kaons is very high for
momenta below 700 MeV, with a slight dip for 100 MeV kaons. For protons, the separation is
best around 1 GeV, the same momentum region that also contains the majority of protons.
The purity for the selection of muons almost never reaches the desired 95 per cent, which
illustrates the need for other detectors to help distinguish them.

It should be noted that the efficiency values for fixed purity are taken directly from the
purity–efficiency plots, by taking the highest efficiency which has a purity at least as high as
required. This means there is no interpolation between different points and the resulting
efficiency values are likely to be an underestimate, in particular for high purities. The error
bars show statistical errors on the determined efficiency only, and do not reflect binning
effects.

As we have already seen, the dE/dx method is especially useful for identifying hadrons with
a momentum below their minimum of ionisation. Of particular importance for physics anal-
yses is the performance for pions and kaons, which will be the main focus of the subsequent
considerations.
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Figure 6.6.: Example efficiency–momentum plot for a fixed purity of 95 %. Colours denote
electrons, muons, pions, kaons, and protons.

In the following, a number of different approaches to the dE/dx likelihood ratio method
will be considered. Differences may occur not only in their resulting PID performance, but
also in their robustness against “overtraining” and their computational efficiency. The classi-
fication using PDFs from all three tracking detectors, using individual dE/dx measurements,
will be used as a point of reference for these comparisons, as removing information—either
by omitting detectors or by using mean values of measurements—is not expected to yield a
better separation.

6.4.1. Using hits from silicon detectors

It is clear from the dE/dx–momentum plots for SVD and CDC (Figure 6.4) that the informa-
tion from energy loss in silicon sensors and a gas volume is at least somewhat complementary.
This is very visible in the case of electrons, but the silicon detectors may also provide addi-
tional information for very low-pt tracks that do not produce a large number of hits in the
drift chamber.

To evaluate how large the effect of adding SVD and/or PXD data is, three classifications
were made using data from (a) only CDC, (b) SVD and CDC, and (c) all three tracking detectors.
The results can be seen in Figures 6.7–6.9, again for purity fixed to 95 %, but with a somewhat
finer binning.

The efficiency–momentum plot for a classification that only uses CDC data shows prob-
lems with the separation in regions where the dE/dx measurements for the particle in
question overlap with the electron band. This is very visible for kaons with a momentum
of 0.5–1 GeV, but also for protons just above 1 GeV. For lower momenta, the separation is
decent, especially the pion–kaon separation below 500 MeV seems to be reasonable. It is
quite possible that the observed deficiencies caused by the electrons in the sample can
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Figure 6.7.: Efficiency–momentum plot for a classification using only CDC data, with a fixed
purity of 95 %. Colours denote electrons, muons, pions, kaons, and protons.

be solved by adding information from the outer detectors, especially the electromagnetic
calorimeter (ECL).

Adding information from SVD hits to the final likelihood for each hypothesis yields results
that are significantly better than with drift chamber data alone, as Figure 6.8 shows. The
improved electron separation below 1 GeV greatly increases the efficiency of the selection of
hadron candidates, including pions. In particular, kaons can now be selected with high purity
and an efficiency of up to 98 % for momenta from 200 to 800 MeV; the proton separation also
works fine in a fairly broad momentum region.

The effect of also adding PXD data, i. e. using information from all three tracking detectors,
can be seen in Figure 6.9. There is no additional large effect, with only minor changes in
the attainable efficiency. In some cases, the efficiency actually seems to decrease, e. g. for
pions with p ≈700 MeV. Looking at the underlying purity–efficiency plots, which are shown
overlaid in Figure 6.10, the selection efficiency actually appears to improve by a few per
cent for electrons, kaons, and also pions. As mentioned before, the fixed-purity plots can
underestimate efficiency through binning effects, which in this case is caused by a tiny
variation in the pion selection. For moderate purities (70–80 %) and track momenta < 1 GeV,
adding data from the pixel detector actually improves the selection efficiency a bit, similar to
what is seen in Figure 6.10.

It appears that using the SVD data is quite worthwhile for a good performance, as it restores
separation for low momenta with only 6 layers of data, i. e. low computational expense. The
pixel detector does not improve things by much, and it is doubtful whether it makes sense to
include it.

51



6. Particle Identification using dE/dx

p / GeV

E
ffi

ci
e
n
cy

Figure 6.8.: Efficiency–momentum plot for a classification using SVD and CDC data, with a
fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and protons.
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Figure 6.9.: Efficiency–momentum plot for a classification using PXD, SVD, and CDC data,
with a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and
protons.
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Figure 6.10.: Purity–efficiency plot for p in [690 MeV, 770 MeV], for a classification including
PXD data (solid) and with only SVD and CDC (dashed). Errors have been omitted
for legibility, but are about 1 percentage point for electrons, muons, and protons;
less for pions and kaons. Colours denote electrons, muons, pions, kaons, and
protons.

6.4.2. Comparison with truncated mean

As mentioned earlier, the truncated mean is a commonly used method to suppress the
outliers of the Landau distribution of dE/dx measurements. It is also regularly used directly
for classifications instead of the individual data points. For example, the predecessor of
Belle II, the Belle experiment, used a truncated mean with the top 20 % cut away for its dE/dx
particle identification [31]. But how does this actually compare to a classification making use
of individual dE/dx measurements?

For the truncated mean, the likelihood function does not contain factors for each element
of the full dE/dx vector, but is equal to the product of the values of the PDFs for the measured(
(dE/dx)trunc , p

)
pairs for each included detector. While this can very slightly speed up the

classification, most of the run time is taken up by the reconstruction of distances.

Since the truncated mean can be adjusted to cut away more or less data points on both
sides, it includes a whole class of estimators, that ranges from no truncation at all (arithmetic
mean) to the symmetrical removal of all data points save one (median). Because of this,
classifications with different cut-offs will have to be compared. For the underlying landau
distribution, asymmetric cutoffs are appropriate, as were used for Figure 6.4 with the lowest
5 % and the highest 25 % removed. Here, successively harder cuts of 3 % and 15 %, 5 % and
25 %, as well as 8 % and 40 % for the lower and higher bound will be compared. This of course
does not cover the entire parameter space, but should give an impression of the effect of
these variations and the possible separation. For the pixel detector, where more than two
hits are quite rare, the average will be used instead of a truncated mean.
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Comparing Figure 6.11 with a classification that includes individual dE/dx measurements
in the likelihood functions (Figure 6.9), one notices a harsh drop in reachable efficiency over
almost the entire momentum range. For pions and kaons, the separation is comparable to
that attainable using only CDC hit data, with slightly higher purity. The fluctuations in the
selection efficiency of protons point to a purity–efficiency curve that almost falls short of the
necessary purity, due to still present dE/dx outliers from the other particles. The relatively
low efficiencies for electrons may be somewhat surprising, given that the electron band in
Figure 6.4 (b) seems to have no noticeable overlap above 1.5 GeV momentum. However, as
we require a 95 % purity for our electron selection, this merely indicates that the region of
the electron band still contains contributions of at least 5 % from other particles at least in
some regions. When individual hits are used, it is quite likely that a reasonable fraction of the
dE/dx measurements for a non-electron track lie below the electron band, which, through
being included in the final likelihood, would make the electron hypothesis much less likely.
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Figure 6.11.: Efficiency–momentum plot for a classification using a 3 %/15 % truncated mean,
with a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and
protons.

Figures 6.12 and 6.13 show further classifications using the truncated mean, with an even
larger portion of measurements excluded. The observable differences tend to be confined to
single momentum bins, and are caused by relatively minor fluctuations in the underlying
purity–efficiency plots. Only for the electron selection efficiency does there seem to be
a common trend, where the efficiency over a broad range seems to improve with more
measurements being excluded.

6.4.3. Fitting distributions

Until now, all 15 dE/dx probability density functions (five particle types × three detectors)
were saved as two-dimensional (template) histograms with a fairly high number of bins.
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Figure 6.12.: Efficiency–momentum plot for a classification using a 5 %/25 % truncated mean,
with a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and
protons.
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Figure 6.13.: Efficiency–momentum plot for a classification using a 8 %/40 % truncated mean,
with a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and
protons.
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Of those, a good portion are empty or contain only very few entries, which may lead to
the classification learning more about the statistical fluctuations of the data sample than is
acceptable. This can be avoided by parametrising the histograms using their known shape
and generating simplified PDFs from these parametrisations. The procedure and its effect on
the classification will be discussed in this section.

For our purposes, the two-dimensional PDFs can be described by the Bethe–Bloch function
for the dE/dx–p shape, and something resembling a Landau distribution for the spread of
the dE/dx values. To avoid the complexity of a full two-dimensional fit, the distribution of
dE/dx values will be fitted in a number of small momentum regions, for each detector. For
the shape, a Landau distribution convolved with a Gaussian for resolution effects will be
used. The fit is performed using the RooFit [32] toolkit using a likelihood fit.

For a track momentum around 1 GeV, Figure 6.14 shows the resulting fitted shape plus
data points for kaons and electrons. The distributions and fit results for those two particles
are typical and clearly show the differences between the different detectors: for the PXD
the fit seems to be perfectly fine, but for SVD and CDC some deviations can be seen. The
description of the energy loss peak in the SVD appears to be accurate, but higher dE/dx
values seem to be less common than expected. For the CDC, there are also some deviations
visible in the tail. This becomes clearer when looking at the distribution of the pulls, defined
as

pull = xdata −xfit

σdata
.

These show nearly perfect agreement for the PXD, whereas for the SVD divergences of
over three sigma can be seen above dE/dx values of 0.02, where the amount of energy loss
is overestimated. The deviations in the drift chamber, however, are much larger and clearly
visible even without considering the pull distributions. The cause of these differences is
unknown, but could arise from inaccuracies in the dE/dx reconstruction, or the higher
statistics of the SVD and CDC.

Between different momentum bins or particles, the width of the resolution term does
not change significantly and is set to 105, 2 ·10−4, and 4.4 ·10−7 for the PXD, SVD, and CDC,
respectively. The mean value of the Gaussian is set to zero. This stabilises the fit and halves
the number of parameters. The remaining two parameters, the most probable value (MPV)
and width of the Landau distribution, vary with momentum and can also be parametrised in
a separate fit. Note that both are parameters of the fitting function and do not correspond
directly to the maximum of the distribution or the full width at half maximum (FWHM). [33]
The momentum dependency of the most probable value can be described a Bethe–Bloch
curve, as was expected. While the width parameter shows a similar behaviour, this is not
caused by any physical spread of the energy loss, but an effect caused by the momentum
binning. In regions where the most likely dE/dx measurement changes rapidly with the
momentum, the measurements in one momentum bin will show a much larger spread,
leading to an apparent increase of the width of the Landau distribution. Because of the
similar shape, this is also parametrised using a Bethe–Bloch function, but without any linear
term.

The momentum dependency of both parameters is fitted using two independent χ2 fits for
every PDF, as is shown for kaons in the SVD and electrons in the PXD in Figure 6.15. Each
PDF can then be constructed from only 7 fit parameters (plus the 3 resolution parameters) by
calculating the Landau MPV and width and saving the resulting one-dimensional PDF in the

56



6.4. Evaluation

0 5 10 15 20 25

6
10×

E
ve

nt
s

/(
25

00
00

)

10

210

3
10

410

0 5 10 15 20 25

6
10×

Pull distribution

0 5 10 15 20 25

6
10×

E
ve

nt
s

/(
25

00
00

)

10

210

3
10

0 5 10 15 20 25

6
10×

Pull distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
ve

nt
s

/(
0.

00
08

)

210

3
10

410

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Pull distribution

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

E
ve

nt
s

/(
0.

00
08

)

10

210

3
10

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Pull distribution

0 2 4 6 8 10 12 14 16 18 20 22

-6
10×

E
ve

nt
s

/(
2.

2e
-0

7
)

210

3
10

410

0 2 4 6 8 10 12 14 16 18 20 22

-6
10×

Pull distribution

0 2 4 6 8 10 12 14 16 18 20 22

-6
10×

E
ve

nt
s

/(
2.

2e
-0

7
)

10

210

3
10

410

0 2 4 6 8 10 12 14 16 18 20 22

-6
10×

Pull distribution

3

-3

0

3

-3

0

3

-3

0

3

-3

0

3

-3

0

3

-3

0

Figure 6.14.: Fits to the dE/dx distributions of kaons (left) and electrons (right) in the PXD
(top), SVD (middle), and CDC (bottom), shown with a logarithmic scale on the
vertical axis. The pull distributions shown below each plot indicate the deviation
of data points from the fitted shape.
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required number of momentum bins. Since the repeated calculation of the value of the 2D
PDFs is rather expensive—the Bethe–Bloch shapes must be evaluated at the given momentum
and the Landau and Gaussian shapes need to be convoluted, which involves a Fourier
transform—the values are precalculated and saved in a 100×100 histogram. Figure 6.16
compares some of the probability density functions constructed using the fit results with
those obtained directly from data. The main difference between them is the graininess of the
data PDFs in regions with low probability, whereas the fit PDFs show a smooth distribution.
The white regions in both diagrams are for the most part an artifact of the chosen logarithmic
scale, and still contain non-zero entries. Of course some regions of the data PDFs, mostly
with high momenta, are actually empty. Yet, the PDFs from fit results also cover these low-
statistics areas and provide sane probability densities even for very high dE/dx values. Some
deviations occur for values below the main band, where the data PDFs contain a few entries,
but the Landau distribution drops to almost zero, with values much lower than in the high
dE/dx tail.

It should be noted, however, that these Bethe–Bloch fits are rather unstable and a consider-
able amount of fine-tuning is required to get decent fit results for all fifteen PDFs. For this
reason the PDFs created using the results of a successfully fitted generic sample of 66,000 BB
decays were used for the classification shown in Figure 6.17. Compared to a classification
using template PDFs (see Figure 6.9), the selection of kaons is slightly less efficient, while the
efficiency for electrons shows an obvious increase for momenta between 500 MeV and 1 GeV.
However, this latter increase is caused by the different sample, which used a previous version
of the tracking software that was less efficient for low-energy pions.

Overall, the observed differences are not large, indicating that with a Monte Carlo sample
of the employed size, the template PDFs do not contain too much information about the
sample’s statistical fluctuations. Additionally, the templates can be constructed without
manual intervention and can include features of the data that are not easily parametrised,
such as the deviations for lower dE/dx values.

6.4.4. Discussion of track extrapolation

For the classifications shown previously, the track direction information necessary for the
dE/dx reconstruction was obtained by assuming a helical track initialised with the fitted
track parameters at the origin (provided by GENFIT). This introduces some inaccuracies as
possible energy losses and multiple scattering effects are neglected. GENFIT’s track represen-
tation itself is also capable of providing the track momentum at a specific hit, which for the
employed RKTrackRep involves a Runge–Kutta algorithm stepping through the detector from
the last known track state, taking into account interactions with the material, and updating
track position, momentum and the associated error matrix. [30] As this needs to be done for
each hit in the tracking detectors, the performance impact of the Runge–Kutta extrapolation
can be quite large.

The alternative helix extrapolation employed so far is somewhat simpler: for each hit,
the closest point on the helix is searched using a one-dimensional minimisation, where the
position on the helix is determined using simple geometry for each minimisation step. It
is also possible to combine both methods: to make sure the helix approximation remains
accurate during the track’s passage through the CDC, the distance of the reconstructed hit
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Figure 6.15.: Successful fits of the momentum dependence of the MPV (left) and width (right)
parameters of the dE/dx distributions, shown here for kaons in the SVD (top)
and electrons in PXD (bottom). Dots with error bars show the results of dE/dx
distribution fits in individual momentum bins with their fit errors, solid lines
the fitted Bethe–Bloch-like shape.
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Figure 6.16.: PDFs created using the fit results of Figure 6.15 (left), compared with the cor-
responding PDFs from data (right). The top row shows probability density
functions for kaons in the SVD, the bottom row for electrons in the PXD. Colours
show probability densities on a logarithmic scale ranging from close to 1 (red)
over 10−1 (yellow) and 10−2 (blue) to 10−3 (violet).
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Figure 6.17.: Efficiency–momentum plot for a classification using PDFs created from fit re-
sults, using information from individual hits in all three tracking detectors. For
this classification, a different BB sample was used (see text). Colours denote,
from top to bottom, pions, kaons, electrons, muons, and protons.

to the closest point on the helix is calculated for each hit. Should the distance exceed some
fixed limit, the RKTrackRep extrapolation is then used to reinitialise the helix parameters.

Table 6.1.: Comparison of the required CPU time needed by the dE/dx reconstruction. The
RKTrackRep extrapolation at the origin is not included in the final count. One
reconstructed event contains 8 tracks on average.

Time per event / ms RKTrackRep extrapolations per event

RKTrackRep 1429 399.1
Helix 50.0 0
Hybrid approach 136.6 27.7

Table 6.1 shows the results of a sample of 125,000 Monte Carlo events being processed using
the dE/dx reconstruction module, either using RKTrackRep, a helix, or a hybrid approach
for the track extrapolation. As can be seen, the RKTrackRep extrapolation is about 28 times
slower than the helix approximation and takes more than one second per event (or 50 CPU
hours for the whole sample). Clearly this is unacceptable performance for an application
that is supposed to run on practically all of the data taken. The hybrid approach, which
reinitialises the helix parameters using the track representation once the helix more than
4 cm away from a CDC hit, is almost three times slower than the helix approximation, but
still more than ten times faster than the pure RKTrackRep extrapolation. In principle, this
distance cut can be adjusted to gain acceptable performance without excessively sacrificing
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Figure 6.18.: Efficiency–momentum plot for a classification using individual hit information
from all three tracking detectors, reconstructed using RKTrackRep extrapolation
only, with a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons,
and protons.

One, however, still needs to compare their respective classification performance to judge
whether the speedup of the helix or the hybrid approach can be justified. A classification
that uses dE/dx values reconstructed using RKTrackRep at each step is shown in Figure 6.18.
Compared to a classification using one helix for the whole track (see Figure 6.9), the most
striking difference is an improved efficiency for the selection of electrons, particularly around
500 MeV as well as a somewhat broader momentum range for the identification of protons.
In the same region, the selection efficiency for pions and kaons also improves very slightly.

Figure 6.19 shows the results of a classification that uses the RKTrackRep/helix hybrid
approach for its dE/dx reconstruction, individual hits from all three tracking detectors
were included. As one would expect, the resulting efficiencies can be found somewhere
between the pure helix and pure RKTrackRep approach. However, most of the efficiency
improvements for hadrons can also be achieved through the hybrid extrapolation. It thus
might be worthwhile to further improve the computational performance of this mode, for
example by limiting the number of RKTrackRep extrapolations per track. Otherwise it is
possible a large number of CPU cycles is wasted on tracks that were incorrectly fitted, and
where the track representation actually does not provide a better accuracy than a mere helix.

Regarding the performance of the dE/dx reconstruction, it should be noted that the
per-event times in Table 6.1 are not final, and are meant to show the relative complexity
of the involved algorithms. With minor effort, such as compiling ROOT and GENFIT with
optimisation flags and removing some debugging output, these can be reduced to 460 ms
and 15 ms for the pure RKTrackRep and pure helix extrapolation, respectively. As can be
seen, the relative run time does not change much, and the helix extrapolation is still about 30
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Figure 6.19.: Efficiency–momentum plot for a classification using individual hit information
from all three tracking detectors, reconstructed using the hybrid approach, with
a fixed purity of 95 %. Colours denote electrons, muons, pions, kaons, and
protons.

times faster.

6.5. Calibration from D∗ decays

As already mentioned in Chapter 5, the self-tagging decay D∗(2010)±→π±
sD0

[→ K∓π±]
can

be used for the verification and calibration of particle identification methods. For the Belle
experiment, D∗ decays were used to study the performance and systematics of the finished
particle identification, which combined data from the CDC, TOF, and ACC detectors. [34]
This section, on the other hand, will describe the calibration of the PID method, so data can
be used instead of Monte Carlo simulations to construct probability density functions. Both
methods may prove useful to either verify the data do not contain detector or electronic
effects that have not been understood, or, at least for pions and kaons, avoid the generation
of Monte Carlo PDFs entirely. While the other detectors may also be used to independently
identify particles, possibly with more accuracy than possible here, the pion/kaon tagging
from D∗ decays can be done using only the tracking detectors. For this method, it is first
necessary to identify this specific decay using the invariant masses of the daughter particles.
Then, the two final state particles with the same charge must be pions, the other is a kaon.
This knowledge can then be used to build PDFs for pions and kaons directly from data.

For the first step, all combinations of three tracks with two tracks of negative and one
of positive charge in an event (and vice versa) are considered. One of the two tracks with
same charge is taken as a slow pion, assuming it passes a very loose cut of p < 0.5GeV
that only reduces the number of wrong candidates. The two remaining tracks (of opposite
charges) are assumed to be the kaon and pion produced by the decay of the D0, where the
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pion should have the same charge as the slow pion candidate. Taking the known masses
of the pion and kaon from [16], one can convert the three-momentum ~p provided by the
track fitting algorithm into a four-momentum P = (

E/c,~p
)

using E 2 = |~p|2c2 +m2c4. The
four-momentum of the D0 can then be obtained by adding the four-vectors of the daughters:

PD0 = PK +Pπ

If the hypothesis is correct, that those two tracks are the decay products of a D0 and the masses
have not been switched around through combination with a wrong slow pion candidate, the
invariant mass of the D0 should be equal to the D0 mass of around 1.86 GeV.

M(D0) =
√

PµPµ =
√(

E

c

)2

− ∣∣~p∣∣2 = mc2

Of course, in reality the fitted momentum vectors are afflicted with errors and the resulting
invariant mass distribution shows a peak with some width (see Figure 6.20). The correctly
reconstructed D0 daughters are selected by taking a fairly broad region around the peak,
from 1.84 to 1.89 GeV. The rest of the distribution’s shape is dominated by wrong track
combinations, which are discarded.
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Figure 6.20.: Plot of the invariant mass of the D0 daughter candidates with the cut region
highlighted.

After candidates have been selected for each event, one can use the difference M(ππK)−
M(πK) of the invariant masses of the D∗ and of the D0 daughters to look for a peak around
mD∗ −mD0 = 145.4 MeV. Since there are a number of misreconstructed decays in the region
of the peak, just using those tagged decays to construct PDFs would result in a suboptimal
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6. Particle Identification using dE/dx

classification. To avoid this, one can fill PDFs using the data in the signal region and subtract
the dE/dx–p distribution of background data, normalised to the amount of background in
the signal region. The signal region is defined from 144.5 to 147 MeV, and includes most of the
peak, the background distribution is taken from 150 to 160 MeV. The amount of signal and
background in the peak region is obtained via an extended likelihood fit of the distribution,
where the background is described using an empirical parametrisation of the D∗(2010)±−D0

phase space given by the following formula:

f (x) = a
√

x −mπ± +b
√

(x −mπ±)3

The signal shape is described by the sum of a Gaussian and a broader bifurcated Gaussian.
The resulting fit can be seen in Figure 6.21 and is in good agreement with the data points. The
fit separates the signal region into 603.9 signal events that should be correctly reconstructed
and 72.1 misreconstructed background events, yielding a signal ration (NS/(NS+NB )) of 89 %.
From the Monte Carlo truth, the signal box actually contains 610 signal and 66 background
candidates. Assuming Poisson statistics for the fitted number of signal/background events,
the true and fitted values agree nicely.
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Figure 6.21.: Plot of the difference of the D∗ and D0 candidate invariant masses. Dots with
error bars show data points, with true signal and background candidates shown
in the underlying histogram. The dotted line shows the fitted background shape,
the solid line the fitted distribution of signal plus background.

Now that probability density functions for both pions and kaons have been constructed,
we can compare the resulting classification with that for PDFs constructed directly using
particle type Monte Carlo truth. As no PDFs for leptons or protons can be obtained from the
D∗ decays—at least not directly—we will only look at the separation of pions and kaons. All
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other particles in the used BB data sample are ignored and thus not counted as either signal
or background in any selection. The momentum distributions for pions and kaons are taken
directly from Monte Carlo.

One can compare the classifications for both types of PDFs in Figure 6.22. For both pions
and kaons, the probability density functions constructed from D∗ decays (classification (b))
seem less accurate. This results in an efficiency that is a few per cent lower for kaons, whereas
the selection of pions seems to be about 1 % less efficient below 1 GeV. For higher momenta,
pions can no longer be separated with the required purity, which can be understood from the
momentum distribution of the pions used to build the PDFs. Slow pions are concentrated at
momenta below 200 MeV, while the D0 daughter pions are distributed around 1 GeV. Above
2 GeV, the PDFs built from D∗ decays are practically empty. In contrast to classifications
including all five particle types, both (a) and (b) show a relatively high selection efficiency for
pions above 2 GeV, because there is no longer any need to distinguish them from muons.

6.6. Summary and outlook

In this chapter, a likelihood ratio based method for dE/dx particle identification was pro-
posed and evaluated. It was shown that adding charge signals from the silicon detectors,
instead of using only drift chamber data, significantly improves the selection efficiencies
of all particle types, especially below 1 GeV. Also demonstrated were improved selection
efficiencies when including individual dE/dx measurements in the likelihood functions,
instead of using the truncated mean. Fitting the dE/dx–p distributions is possible, and
reduces the number of parameters to 7 per PDF, plus fixed resolution terms for each detector.
The resulting classification, however, does not show any large changes that would indicate
overtraining. Since it is easy to generate Monte Carlo samples of the size required to produce
relatively smooth probability density functions, whereas the fits require a large amount of
fine-tuning and cannot describe some of the features seen in the data, it is unclear whether
the additional effort is worthwhile.

Regarding the computational performance of the method, it was shown that while the
RKTrackRep extrapolation yields a better separation, mostly for electrons, it increases the
CPU time by a factor 30 compared to a track extrapolation assuming a helical track. If the
improved reconstruction is deemed worthwhile, using a hybrid approach that updates the
helix parameters when inaccuracies are detected is recommended. This retains most of the
improvements and can be tuned to limit the CPU time required for the dE/dx reconstruction.

It is also possible to validate the classification or construct PDFs for pions and kaons
using D∗ decays, where the decay products can easily be distinguished by their charge.
Similar calibrations are possible for the other particles, for example through J/ψ→µ+µ− and
J/ψ→ e+e− for muons and electrons. [35][36]

Of course, looking at the specific energy loss in the tracking detectors is not the only
method of particle identification, and for Belle II, the TOP, ARICH, KLM, and ECL all provide
information that aids the identification of charged particles (cf. Chapter 2). The ECL and
KLM are quite useful for the identification of leptons, and can identify electrons (ECL) and
muons (KLM) over a large momentum region. The time-of-propagation (TOP) counter and
the end cap ARICH, on the other hand, yield a more general particle identification using
Cherenkov angles. However, because the particles need to exceed the speed of light in the
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Figure 6.22.: Efficiency–momentum plot for the selection of pions and kaons from a BB
sample with a fixed purity of 95 %. Both classifications use likelihood functions
including individual hits from all three tracking detectors.
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6.6. Summary and outlook

detector medium to generate Cherenkov photons, both TOP and ARICH show a threshold
behaviour. Particles with a too low velocity do not generate signals, but this in turn gives a
lower limit on their mass, which helps identify them. Figure 6.23 shows the π/K separation in
the ARICH from simulations, where selection efficiency drops off sharply for momenta below
1 GeV.

Figure 6.23.: Kaon selection efficiency for 1 % pion misidentification probability over particle
momentum for the ARICH detector. Taken from [12, p. 277].

The dE/dx method in the tracking detectors can fill this low momentum gap and provides
very good separation for pions and kaons between 200 and 800 MeV. Additionally, electrons
can be distinguished over a broad momentum range, as well as protons below 1.4 GeV. In the
end, the information from the different PID methods will be combined to provide a nearly
uninterrupted separation between particles for the entire momentum range.

Compared to the predecessor, Belle, the Belle II experiment will have two dedicated PID
detectors that greatly improve upon their equivalents at Belle. This is demonstrated by a
physics impact study in the technical design report [12] that compares the relative amounts of
signal and background in B0 → ρ0γ decays, which can be used to measure CP violation. [37]
The ρ0 meson decays with almost 99 % branching ratio into two charged pions [16], whereas
the more common background process B0 → K∗

0γ produces a kaon and a pion. In the study,
the pion/kaon separation in this decay is compared between the Belle (EACC, TOF, and dE/dx
and the Belle II configuration (ARICH and TOP). The barrel and forward end cap regions
are compared independently, with the results shown in Table 6.2. It is evident that Belle II’s
PID significantly improves upon the results obtainable with Belle, with the figure of merit
NS/

p
NS +NB improving by 35 % when switching from a pure Belle configuration (B1+F1) to

Belle II’s PID detectors (B2+F2), which corresponds to a gain in luminosity of about 80 %.

How does the dE/dx method studied in this diploma thesis compare to the PID used
in Belle? Belle note 321 [31] analyses the performance of the kaon identification, i. e. the
separation of pions and kaons, using the ACC, TOF, and dE/dx methods. Figure 6.24 shows
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6. Particle Identification using dE/dx

Table 6.2.: Number of signal and background events (NS, NB), figure of merit (FOM) and the
lower limit for∆E for a B0 → ρ0γ at 7.5 ab−1. Belle (1) and Belle II (2) configurations
of barrel (B) and forward (F) PID are compared, i. e. B1 includes Belle’s ACC, TOF,
and dE/dx PID, F1 ACC and dE/dx; B2 is Belle II’s TOP counter, F2 the ARICH
detector. Taken from [12, p. 279].

Barrel Forward NS NB FOM ∆Emin [ GeV]

B1 F1 987 5242 12.5 −0.25
B1 F2 1032 5026 13.3 −0.25
B2 F1 982 2865 15.8 −0.30
B2 F2 1027 2651 16.9 −0.30

the results of a fixed cut on the probability (assuming a 1:1 ratio between pions and kaons):

Prob(K :π) = LK

Lπ+LK

The red dots show the selection efficiency for kaons, the blue dots the pion fake rate, defined
as

π fake rate = π selected as K

total number of π
= 1−purity for π.

The plots, divided into barrel and forward end cap, show the complementarity of the
different detectors: the ACC provides reasonable separation for relatively high momenta,
dE/dx works well below 1 GeV and for higher momenta, while the TOF provides decent
separation over a broad momentum range in the barrel. This can be compared to Figure 6.25,
which shows kaon efficiency and pion fake rate for the same cut using the proposed dE/dx
method for Belle II, using a sample of about 200,000 pions and kaons in equal proportion,
equally distributed in a momentum range of 50 MeV to 3 GeV. The main difference is that
the kaon efficiency remains above 40 %, even in the region where Belle’s dE/dx PID drops
below 10 %. Since values of 0.6 or higher are more often reached, the pion fake rate also rises,
though more slowly, and assumes a more regular shape. For lower and higher momenta, the
efficiency approximates that achieved by Belle within the statistical uncertainties. In the
Belle note, no values are provided below 600 MeV, but are expected to be high.
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Figure 6.24.: Plot of the kaon selection efficiency (red) and pion fake rate (blue) for a fixed
cut Prob(K :π) ≥ 0.6 over the track momentum for different PID detectors of the
Belle experiment. The left hand side shows the performance of the subdetectors
in the barrel region, the right hand side that in the forward end cap. Taken
from [31].
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Figure 6.25.: Plot of the kaon selection efficiency (red) and pion fake rate (blue) for a fixed cut
Prob(K :π) ≥ 0.6 over the track momentum for the PID method studied in this
thesis. The likelihood functions include factors for individual hits in all three
tracking detectors.
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7. Conclusions

In Chapter 5 clusters in the pixel detector were analysed using a neural network, using only
information from the clusters themselves. It was shown that pixel clusters created by slow
hadrons can be efficiently selected from clusters produced by background processes. Pri-
marily, this can be attributed to the much larger energy loss of pions with a total momentum
below 100 MeV, whereas the electrons created by the background processes are practically
minimum-ionising particles. Consequently, the separation should be fairly robust against
changes of the background composition, since the distribution of the pixel charges will
be affected only marginally. To verify the robustness of the neural network, tests such as
removing additional variables, different charge cutoffs and artificial smearing of the collected
pixel charges were performed.

The neural network complements the tracking-based data reduction scheme and is able to
rescue 95 % of slow pions while only selecting 10 % of all background clusters. The network
and preprocessing are simple enough to transfer them to an FPGA and could thus be used
to rescue pixel data for slow pions that would be lost when using the tracking-based data
reduction exclusively.

In Chapter 6 a particle identification method for the tracking detectors of Belle II was
developed, and the effect of different variations analysed. It was shown that both the use of
individual dE/dx measurements in the likelihood functions and the addition of information
from the silicon detectors (PXD and SVD) can greatly improve the separation between par-
ticles. A likelihood function containing factors for every dE/dx value makes use of the full
information contained in a set of measurements, whereas the truncated mean reduces this to
a single value. For the added silicon data, this is particularly visible for low-momentum parti-
cles, where the different energy loss for electrons in silicon resolves some overlaps present in
the CDC measurements, and for tracks with only a small number of associated drift chamber
hits. Together, these changes raise the selection efficiencies for pions and kaons to well above
98 % for momenta below 800 MeV, for a fixed purity of 95 %. Electrons can be selected with
high efficiency (> 95%) above p = 1.1 GeV, and with about 50 % efficiency down to 500 MeV.

In direct comparisons of the pion/kaon separation with the separation achieved by the
Belle kaon ID, these improvements are less visible, since particles other than pions and
kaons are ignored. Still, in the momentum region around 1.2 GeV where both particles have
similar energy loss, kaon selection efficiencies of about 45 % are reached, an increase of
40 percentage points compared to Belle. For the electron identification, improvements are
expected mainly for momenta below 1 GeV.

Overall, the particle identification of Belle II is expected to outperform that of the Belle
experiment, and the improved method for dE/dx PID outlined in this thesis will contribute
to that. The method was implemented as a Belle II software framework (basf2) module.
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A. Appendix: Technicalities of the
Datareduction Network

1 2 3 4 5 6 7 8 9 10 11 12 13

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Target

Total charge

Min. c
harge

Max. c
harge

Charge st
d. d

ev.

Length

Length in
 z

Length in
 r/φ

Theta

Number o
f h

its

Layer

Phi

Single hit?

Figure A.1.: Plot of the linear correlations between different input variables and the target
(signal or background cluster).
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