

Determination of $|V_{ub}|$ at Belle II

Matic Lubej*

Moriond EW 2017, La Thuile, Italy

Friday, March 24th, 2017

*On behalf of the Belle II collaboration

Matic Lubej (J. Stefan Institute)

Exclusive $|V_{ub}|$

- Least precise CKM matrix element
- Current precision $\sim 4~\%$ [HFAG, Summer 2016]
- Determined in charmless semileptonic decays
- $B \to \pi \ell \nu$ with $\ell = e, \ \mu$ most precise for $|V_{ub}|$

Pseudoscalar* differential \mathcal{B}

* Simplified for low mass charged leptons (e and μ)

Measurements at *B* factories

- Initial state well known: $e^+e^- \rightarrow \Upsilon(4S)$ (at rest)
- Neutrino escapes detection: $p_{miss} = p_{\Upsilon(4S)} p_{B_{rec}} p_{B_{comp}}$
- If neutrino is the only missing particle: $p_{\nu} = p_{\text{miss}}$

Matic Lubej (J. Stefan Institute)

Belle II detector and SuperKEKB upgrade

- Improved detector efficiency, tracking, PID, ...
- Improved reconstruction neutral particles
- Smarter software, more precise algorithms

e+ 4 GeV 3.6 A

$B \rightarrow \pi \ell \nu$ tagged at Belle II (MC study)

Better tagging algorithm with significantly higher tagging reconstruction efficiency

 $B \rightarrow \pi \ell \nu$ efficiency compared to Belle tagged [Phys.Rev. D88 (2013) no.3, 032005]: 0.3 % \rightarrow 0.55 %

$B \rightarrow \pi \ell \nu$ untagged at Belle II (MC study)

[B2TiP, to be published] Matic Lubei (J. Stefan Institute)

Error scaling

Total error scaling with integrated luminosity \mathcal{L}

$$\sigma_{\text{tot}}(\mathcal{L}) = \sqrt{(\sigma_{\text{stat}}^2(\mathcal{L}_0) + \sigma_{\text{sysred}}^2(\mathcal{L}_0)) \times \frac{\mathcal{L}_0}{\mathcal{L}} + \sigma_{\text{sysirred}}^2(\mathcal{L}_0)}$$

Systematics

- Belle II systematics estimated from Belle
- Reducible and irreducible systematics (with \mathcal{L})
- Tagged: 4.6 % red., 2.0 % irred., biggest contribution: tagging algorithm
- Untagged: 4.2 % red., 1.6 % irred., biggest contribution: $X_{u,c}\ell\nu$, FF shapes and background

[B2TiP, to be published]

Matic Lubej (J. Stefan Institute)

$|V_{ub}|$ from $B \to \pi \ell \nu$ @ Belle II

Toy MC studies based on Belle II MC, LQCD forecasts estimated at 5 years (5, 10 ab^{-1}) and 10 years (50 ab^{-1})

Matic Lubej (J. Stefan Institute)

Summary

- Current precision $\delta^{\pi\ell\nu}_{|V_{ub}|} \approx 4 \%$
- Expected $|V_{ub}|$ precision with full Belle II dataset and LQCD forecasts for $B \rightarrow \pi \ell \nu$ channel:
 - Tagged: 1.7 %
 - Untagged: 1.3 %

Thank you!

Matic Lubej (J. Stefan Institute)

BACKUP

Why $|V_{ub}|$?

Best handle on NP!

• Era of searching for new physics (NP) \rightarrow precision measurements

• $|V_{ub}|$ has **largest** error among unitarity triangle (UT) parameters

Tagged (Belle)

Untagged (Belle)

B_{tag} efficiency

Reasons for improvement:

- More channels included in the tag reconstruction
- Best candidate selection allows also inclusion of high multiplicity modes

Matic Lubej (J. Stefan Institute)

Form factor calculations

complex states

$|V_{ub}|$ extraction

- Need to extrapolate theory input to a certain or full q^2 region
- Model dependent/independent: Whether the model makes any assumptions regarding FF shape

Calculation from ΔB

- Measure partial branching ratio in a *q*² region
- Calculate reduced branching ratio in same region

$$|V_{ub}|^2 = \frac{\Delta \mathcal{B}(q_{min}^2, q_{max}^2)}{\tau_B \Delta \zeta(q_{min}^2, q_{max}^2)}$$

Simultaneous fit to data and theory

- Measure ΔB/Δq² spectrum in bins of q²
- Extract from simultaneous fit to data (shape + scale) and theory input (shape) by minimizing

$$\chi^2 = \chi^2_{data} + \chi^2_{theory}$$

From-factor parametrization (BCL function):

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{n=0}^{N-1} a_{n}^{+} \left[z^{n} - (-1)n - N\frac{n}{N} z^{N} \right]$$

with 3 (shape) + 1 (normalisation) parameters

Assumptions for lattice forecasts

We provide 5 types of the lattice input

- current: input with the current precision basically taken from the updated FLAG-3 review (in preparation; to be appeared on the FLAG webpage: http://itpwiki.unibe.ch/flag/).
- 5 yr w/o EM: We assume a factor of 2 reduction of the lattice QCD uncertainty in the next five years and that the uncertainty of the EM correction is negligible (for processes insensitive to the EM correction).
- 5 yr w/ EM: LQCD uncertainty is reduced by a factor of 2 but add in quadrature 1% uncertainty from the EM correction.
- 10 yr w/o EM: We assume a factor of 5 reduction of the lattice QCD uncertainty in the next ten years (or as a milestone of lattice QCD simulations). We also assume that the EM correction will be under control and its uncertainty is negligible.
- 10 yr w/ EM: LQCD uncertainty is reduced by a factor of 5 but add in quadrature 1% uncertainty from the EM correction.

$B\to \pi\ell\nu$

The most precise measurements can be averaged with a likelihood fit.

$B \to \pi \ell \nu$

Matic Lubej (J. Stefan Institute)

Belle II prospects for exclusive $|V_{ub}|: B \to \pi \ell \nu$

Tagged $B \rightarrow \pi \ell \nu$

- Efficiency: 0.3 % \rightarrow 0.55 %
- $\sigma^{exp}_{\Delta B/\Delta q^2}$ scaling with \mathcal{L} : 2.7, 2.4 and 2.1 % for 5, 10 and 50 ab⁻¹
- Irreducible systematics: 2.0 %
- $|V_{ub}|$ precision: $\delta_{|V_{ub}|} = 3.2, 2.7$ and 1.7 % for 5, 10 and 50 ab⁻¹

Untagged $B \rightarrow \pi \ell \nu$

- Efficiency: 11 % \rightarrow 20 %
- $\sigma^{exp}_{\Delta B/\Delta q^2}$ scaling with \mathcal{L} : 2.2, 1.9 and 1.7 % for 5, 10 and 50 ab⁻¹
- Irreducible systematics: 1.6 %
- $|V_{ub}|$ precision: $\delta_{|V_{ub}|} = 2.1$, 1.9 and 1.3 % for 5, 10 and 50 ab⁻¹

Projections include lattice forecasts. [A. Kronfeld, T. Kaneko, S. Simula]

Belle II prospects for exclusive $|V_{ub}|: B \to (\rho, \omega) \ell \nu$

No extensive studies for these projections.

Possible to assume sample sizes in the future based on Belle (hadronic tag) @ 711 fb⁻¹ with efficiency improvements:

•
$$N_{
ho^0} = (621.7 \pm 35.0) \rightarrow \sim 80 \text{k} \ (\delta_{\text{stat}} \approx 0.5\%) \ @ 50 \ \text{ab}^{-1}$$

•
$$N_{\rho^+} = (343.3 \pm 28.3) \rightarrow \sim 44 \text{k} \ (\delta_{\text{stat}} \approx 0.7\%) \ @ 50 \ \text{ab}^{-1}$$

•
$$N_{\omega(3\pi)} = (96.7 \pm 14.5) \rightarrow \sim 12.5 \text{k} \ (\delta_{\text{stat}} \approx 1.3\%) \ @ 50 \ \text{ab}^{-1}$$

- With such sample possible to do a full helicity angle analysis
- Also possible to check for right-handed currents
- Will contribute to better understanding of the $b \rightarrow u$ spectrum
- Can we expect lattice for these modes by then?