Improvement of AMGA Python Client Library for the Belle II Experiment

Jae-Hyuck Kwak, Geunchul Park, Taesang Huh, and Soonwook Hwang

KISTI (Korea Institute of Science and Technology Information), Republic of Korea

Motivation

- gBasf2 uses AMGA python client API to access AMGA
- AMGA python client API has a lack of functionalities, compared to C++ client API
 - No support for client-side metadata federation
- Developer from the Belle II distributed computing system asks for improvement of AMGA python client API
 - Client-side metadata federation support, GSI (python SSL wrapper for DIRAC) support, API refinement

Overview of the Belle II Experiment

- An upgrade of the B factory experiment Belle at the KEX laboratory in Tsukuba, Japan, investigating CP violation, which explains why the universe today consists only of matter and no anti-matter
 - SuperKEKB accelerator commissioning starts in early 2016
 - Phase 2 run (w/o the vertex detector) starts in 2017
 - Phase 3 run (w/ the full detector) starts in 2018
- Expected to produce ~100PB (one set of raw data) and another ~100PB (MC/analysis data)
- 1.8GB/s @ Storage
- 10s of millions of files distributed across multiple grid sites
- Belle II Computing Model uses DIRAC for distributed workload management, AMGA for metadata catalog, and gBasf2 for job submission client

AMGA Overview

- Standalone Grid metadata catalog for supporting metadata description, discovery and archive of large-scale scientific data
 - Directory-like hierarchical structure
 - Various authentication methods (ID/password, VOMS certificate)
 - ACL-based authorization
 - Heterogeneous DB back-ends (Modular back-end: PostgreSQL, MySQL, Oracle, SQLite)
 - Standardized access methods (Modular front-end: TCP Streaming, SOAP WS-DAIR, SSL)
 - Multi-process/Multi-thread DB connection
 - Pre-existing DB import
 - Metadata replication and federation (experimental)
 - General-purpose AMGA Manager GUI
 - Various programming API (C++, Java, Python)

Support for Client-side Metadata Federation

- Limitation of AMGA client-side metadata federation
 - Supported by C++ client API only
 - Creates entry of root privilege only, not of user privilege
 - Supports password-based authentication only
- Implemented client-side metadata federation on python client API
 - Introduces new module for federation (mfded.py)
 - Modifies AMGA python client API (mdcclient.py) to use new module, transparently to users
 - Preserves ownership of the entry created by non-root user
 - Supports certificate-based authentication

Support for GSI (python SSL wrapper for DIRAC)

- Use of different SSL libraries between DIRAC and AMGA
 - AMGA supports built-in SSL and TLSSite, while DIRAC supports GSI
- Added GSI support to AMGA python client API
 - Introduces USE_GSI flag to turn it on
 - Could streamline SSL communication scheme for the Belle II distributed computing system
 - Could observe increased stability of SSL connection

Refinement of python client API

- Separate API calls between execution and fetch of AMGA command
 - Prone to misuse AMGA python client API from gBasf2
- Refined AMGA python client API to hide separation between execution and fetch to user
 - Synchronizes execution and fetch of AMGA command by introducing fetch flag to the related python client API
 - Modified API: listEntries, selectAttr, getAttr
 - New API: selectQuery
 - Simplifies use of AMGA python client API

Summary and Future Plans

- Improvement of AMGA python client library, based on requirements from developer of Belle II distributed computing system
 - Added support for client-side metadata federation and GSI, along with API refinement
- Investigation of new action items based on the result of the recent MC campaign
 - Will continue to maintain AMGA python client library based on requirements