IOPScience

Home

Search Collections Journals About Contactus My IOPscience

Software Development at Belle Il

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 J. Phys.: Conf. Ser. 664 062024
(http://iopscience.iop.org/1742-6596/664/6/062024)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 131.169.214.156
This content was downloaded on 09/06/2016 at 10:20

Please note that terms and conditions apply.

jopscience.iop.org

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/6
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

Software Development at Belle 11

Thomas Kuhr! and Thomas Hauth? for the Belle II Software Group

!Ludwig-Maximilians University Munich, Faculty of Physics, Excellence Cluster Universe,
Boltzmannstr. 2, 85748 Garching, Germany

?Karlsruhe Institute of Technology, Institut fiir Experimentelle Kernphysik,
Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany

E-mail: 1Thomas.Kuhr@lmu.de, ’Thomas . Hauth@kit . edu

Abstract. Belle II is a next generation B-factory experiment that will collect 50 times more
data than its predecessor Belle. This requires not only a major upgrade of the detector hardware,
but also of the simulation, reconstruction, and analysis software. The challenges of the software
development at Belle II and the tools and procedures to address them are reviewed in this
article.

1. Introduction

The Belle IT detector [1] and the SuperKEKB accelerator are currently under construction at the
KEK laboratory in Tsukuba, Japan. The aim of this next generation B-factory experiment is to
collect 50 times more data than its predecessor Belle [2] and to use this data to search for new
physics in a variety of B meson, charm hadron, or 7 lepton decays with unprecedented precision.
The higher luminosity at the SuperKEKB accelerator leads to in increase in background radiation
and higher event rates and requires a major upgrade of the detector and the computing system.
As a consequence, also the software for the acquisition, simulation, reconstruction, and analysis
of data has to be upgraded substantially. Early in the project it was realized that an evolution
of the Belle software would not meet all our goals. Therefore, most software components are
new implementations, which take the experience from Belle and other experiments and advances
in technology into account.

2. Challenges

While large parts of the Belle software were written by KEK staff members, the Belle 11 software
development is distributed around the world and relies on contributions from students and staff
members. The regional distribution, as illustrated in Table 1, is one of the challenges. People
who have not met in person and may be separated by several time zones must work together.
With developers in Asia, Australia, Europe, and America (including Hawaii), it is impossible to
find meeting times that are convenient for everybody. The different cultural backgrounds and
language problems make communication even harder.

Also the large variation in programming skills and experiences of developers are a challenge
for a project that has to make sure that all parts fit together. In addition personal preferences
and coding styles are often a subject of discussions. Several tools and organizational measures

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

Table 1. Number of active Belle II software developers per country with the total count of
their commits during one year.

Country Active Developers Commits Last Year
Australia 6 64
Austria 3 384
Canada 2 13
Czech Rep. 3 101
Germany 24 2424
Italy 6 163
Japan 17 759
Korea 4 26
Mexico 1 3
Poland 2 13
Russia 2 16
Slovenia 5 246
Taiwan 1 1
Turkey 1 2
US 7 257

are employed to allow the developers to focus on their main work and, at the same time, keep
them conscious of the overall goal of providing an easy-to-use, robust, and powerful software
suite to the Belle IT collaboration.

3. Tools

Several state-of-the-art tools are used to facilitate the collaborative software development at
Belle II. Modern tools and programming practices are also important to attract and educate
new students.

We use modern compilers, currently GCC 4.7 [3], clang 3.4 [4], and the Intel compiler version
14 [5]. They allow us to benefit from C++11 features in our code. The parallel usage of different
compilers also helps to maintain the portability of the code. The steering of the framework, like
the selection of modules and the setting of their parameters, is done in Python [6], a powerful and
frequently used scripting language. This interface provides the possibility to create higher-level
meta-frameworks on steering file level, e.g. for physics analyses.

The code is built with SCons [7] which provides a few nice features; it uses Python and
therefore does not introduce yet another language in our system, it builds the code in one step
and not via an intermediate Makefile like cmake [8] does, and it can work with a central location
of the source code plus a partial, updated version in a local directory so that developers only
have to check out the part of the code they are working on. Based on SCons, we have developed
a build system that is very easy to use because many functionalities are automated. Basically
the user only has to put the code in the right folder structure and specify the libraries that
should be linked.

We rely on several external products, like ROOT [9], GEANT4 [10], and EvtGen [11] which
are built with a custom Makefile. A consistent, tagged set of these external products is called
an externals version and the basis for our Belle II software. The externals can be compiled from
source, but often the developers install a pre-compiled version that we provide for a selected set
of Linux distributions. Scripts for the installation and setup of external and Belle II software
are in place.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

All code of the Belle II software is maintained in a central Subversion [12] (SVN) repository
at KEK and can be displayed via a ViewVC [13] code browser. Alternatives to Subversion,
like Git [14], were considered, but it was decided to keep SVN for the following reasons. The
philosophy of a central repository with one main development branch discourages divergent
developments and it allows to enforce policies on commits, like style rules, via hook scripts.
Moreover, it is easier to understand and use than Git, in particular for less experienced
developers, but still provides sufficient features. More advanced developers, who are familiar
with Git, can still benefit from its more powerful features by using git-svn.

Developing software in a large project is very different from writing code just for personal use,
like analysis programs. To keep people aware that they are part of a community and to produce
maintainable code, common guidelines and rules are established. While coding conventions
usually cannot be strictly enforced, rules for the formatting style are checked on commits to
the SVN repository. The astyle tool [15] is used for C++ code and pep8 [16] for Python code.
One reason for choosing astyle, besides being an open source tool, was that it is not just a style
checker, but formats the code. We have included astyle in a small script that developers can
use to format their code. Therefore it is very easy to make the code compliant with the style
rules. A similar approach was used for Python with the PythonTidy [17] tool, but abandoned
recently because of unsatisfactory formatting results. Now we use pep8 for the style check and
autopep8 [18] for the formatting, although there are cases where autopep8 is not able to produce
a pep8 compliant result. As the code style is a matter of personal taste it is often a topic of
passionate discussions.

Doxygen [19] was chosen as a tool for the documentation of the source code. Although there
are probably better documentation tools for Python code it allows to use the same tool for
C++ and Python code. Documentation that is beyond the scope of Doxygen is maintained in
a TWiki [20]. A Redmine issue tracker [21] was set up to make sure that discovered problems
are not forgotten. Developers are reminded once a week about issues assigned to them that are
due or have no due date set.

Several tools are applied for the software quality control. googletest [22] can be used for unit
tests. The framework can automatically run steering files that are located in a test folder and
check whether the log output is identical to the expected one. A check for memory management
issues is executed with Valgrind [23].

Finally, we have developed a framework for regression testing. It executes, either locally or
on a batch system, a set of scripts that can be added to the SVN repository together with the
other code. There are production scripts that create simulated data files and plot scripts that
read the data files and create output ROOT files with validation plots. One- or two-dimensional
plots are supported together with ntuples for monitoring numerical values. XML headers in
the scripts provide meta information like the dependencies between the scripts. The plots in
all ROOT files are collected and displayed on a web page. The results from older revisions of
the code are overlayed so that regressions or improvements can be detected. Additionally, a
reference plot, contact information, a description, and instructions for checking the quality can
be provided. A (significant) deviation from the reference is indicated by a yellow (red) plot
frame. Fig. 1 shows an example of a validation plot display.

For an efficient and effective software quality control it has to be highly automated. We
use the Buildbot tool [24] for this task. It is very flexible and it fits well into our environment
because it uses Python for its configuration. Our setup consists of one server and four slaves
with different operating systems: SL5, SL6, Ubuntu 14.04, and a 32bit version of Ubuntu 14.04.
Furthermore, there are additional slaves at two sites, KEK and KIT. Several actions are triggered
either by commits or at given times:

e On commits an incremental build is started and failures of compilation or tests are reported
by email to the committer. This catches, for example, cases where the developer forgot to

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

extrapolated track resolution in ¢ for p < 2 GeV/c

£ P-Value: 0.0427394190694
%250 & reference i
E 216708 1 Chi*2-Test: Performed Chi*2-Test between reference and 16708
° @
200l 16644 ng Contact: n/a
16614 : Description: Extrapolated minus true phi of the track at the bar inner surface for p <2
&116595 ﬂ] GeV/c.
150 & build-2015-02-03 "|
& build-2015-03-01 Et Check for: Significantly broader distribution or offset to zero signals problems in

& build-2015-01-03 -] tracking and may cause severe PID performance degradation.
100 B q

50

llllllllllllllllllllllIIIIII

e
20
Ad [mrad]

&
&
aFLs
[4,1

o

w

>

af

Figure 1. An example of a validation plot (see text for more details).

include a new file in the commit.

e Commits also trigger full builds from scratch on four different systems with three different
compilers where all commits in a 10-minute interval are grouped together. A Python class
on the Buildbot server keeps track of compilation error and warning messages and informs
the developer if any new ones show up. The errors and warnings are also reported on a web
page with links to relevant locations in the source code.

e Each night a full build with different compilers is executed. Furthermore, cppcheck [25] is
applied to the code, tests are executed, the geometry is checked for overlaps, documentation
is generated with Doxygen and messages about missing documentation are recorded, and
SCons debug output is analyzed to determine code dependencies and report missing or
unnecessary library links. If any issues are detected, an email is sent to the person
responsible for the corresponding part of the code base. The result of all checks is displayed
on a web page. Fig. 2 shows an example. It contains links to log files and locations of
problematic code.

e We also use the Buildbot to update the installation of setup scripts, externals, and releases
at sites.

e Whenever a new externals version is tagged, it is automatically compiled on the four slaves
with different operating systems and tarballs of the binaries are made available for download.

e Monthly builds are automated such that the latest tagged versions of the parts of the code
are collected and built. In case of a failure this procedure is repeated the next day. If
the build is successful the code is committed to SVN and the new version announced on a
mailing list together with a report of changes that are provided by the responsible persons
on a TWiki page.

The full list of so-called builders as shown on the Buildbot web interface can be seen in Fig. 3.

4. Organization

A bunch of tools is not sufficient for a successful collaborative software development. In
particular for the collaborative aspect an organization that on the one hand provides sufficient
guidance to prevent a divergent development and on the other hand leaves enough freedom to
not suppress the creativity of the developers is essential.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

Development Build

basf2 framework

Bellell TWiki Manual Subversion Doxygen Redmine Integration Build Memory Check Validation

Results of development build

— Legend:
ﬁ j [—]] P Y .) .
Sunday, March 29, 2015 g EHEJ = ‘4 Extra Link: A library is linked, but not needed
Revision: 16708 . i
* Al Libraries Modules Packages Missing Link: A library is not linked, but needed
© failure
Package details
7y Intel /i Clan
A oeug @ gy ©leng of Test of o Code Q//“
Package Librarian [Build Build [1\, Cppeheck
Result Result metry
Result Result o
Sergey N
alignment o oK o oK of oK o oK None of ok of oK o oK a5 Graph
Yashchenko
Package
. . A4y Wamings: _ graph
w 9 - A P o P - . a
analysis Anze Zupanc J1h Wamings qﬁ 0K ALY Wamings @ E{n y Q// 0/47 q// oK @ Missing! %Exna.? saw Graph
2 2 emarks 012 142 Package
_ 134 .
arich Luka Santel] of OK o ok o ok € remarks: None o ok @ Missing: o oK 5 ERRM
. 39 Package
. N . 44 Warnings . _ .
b2bii Anze Zupanc o OK o« ok o ok ; None of ox (g Missing: o Ok graph
@ ;IEmeKS
35
_ 39
background Marko Staric o OK o ok o oK € Remarks: 1 None o ok of ok o ok s Graph
_ - Package
beast Igal Jaegle of OK o ok o ok € Rremarks: 4 None o ok @ Missing: of OF = Graph
grapl
23 Package
bkim Leo Piilonen J OK qf oK Qﬁ OK q//’ OK None q//” oK q//” oK qf OF b Graphh
grap!
Package
catibration 10 o oF o o o oF o oF None o ok o o o oF o oGEm
Yashchenko i . i i . . i o
Package
Errors: 18
@ - graph
cde Eiichi Nakano oK oK oK _ None oK Missing: 3 Missing: gz Graph
3 3 3 g T 5 A& .
@ Remarks:
1 Package
_ 15 _
decfiles Phillip Urquijo o OK o ok o oK € Remarks: 1 None o ok @ Missing: o oK graph
Christian & b & P - a8 & 121 & -

Figure 2. A screenshot of the nightly build results web page.

The Belle II software group has sub-groups for different tasks: the conditions database, the
signal event generators, the detector simulation, the generation and simulation of background,
the track reconstruction, and the alignment and calibration. Many further tasks are covered by
individuals or small groups so that there is no need for a formal group definition. Developers
are often also members of a detector or physics group which facilitates the communication of
the software group with the whole Belle II collaboration.

The source code is structured in packages. A package, for example, contains the code related
to a detector, the core framework, or the event generators interfaces. Each of the about 30
packages has a librarian who is responsible for the code inside it. The librarian can control who
has write access to the package and has the right to make a tag of the package.

The tags are used to produce monthly builds or releases. As the name indicates, monthly
builds are schedule-driven. They provide a certain pace for the developers. They are also
installed on the central computing system at KEK and provide well-defined code versions for
users and developers. Besides a successful compilation, no quality requirements are checked for
monthly builds. In contrast, releases are feature-driven and a more thorough quality assessment
is performed. The set of requested features and checks is defined in a consensus between users
and developers.

Virtual and in-person meetings are a key component for the exchange of information and the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing

Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024
Builders:

e i =
s -
warnings compile
warnings compile
‘warnings compile

waiting
next in
development ~ 11 hrs 47 mil
at 05:32
e =
.
— -
warnings compile
— -
warnings compile
warnings compile
‘warnings compile
o (| =
warnings compile
waiting
maonthl in
montly ~ 6 hrs 15 mins
at 00:00
I— warnings compile
warnings compile
- warnings compile
warnings compile
e | =
v B -
o L |
waiting
next in
validation warnings compile ~ 11 hrs 47 mins
at 05:32

Figure 3. The list of automated builds for the Belle II software.

coordination of activities. Progress and problems in the daily work are discussed informally in
a weekly developers meeting. The sub-groups often have dedicated (bi-weekly) video meetings.
The tracking group also organizes face-to-face meetings two or three times a year. A good
opportunity to discuss software topics in person are the one-week software and computing
workshops which are held at KEK in autumn and at one of the other collaborating institute in
spring. The software sessions at the collaboration meetings are often joint with other groups to
foster the information flow in both directions.

5. Summary

Large software projects are a challenge and the distribution of the Belle II software developers
all around the world does not make it easier. We have established a set of tools that lets the
developers focus on their main work and provides them with detailed feedback on the code quality
in a highly automated way. An organizational structure for collaboration and coordination is in
place. Since the start of the project in 2008 about 100 different people have contributed, from
undergraduate students to professors. The enthusiasm and devotion of developers will be the

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062024 doi:10.1088/1742-6596/664/6/062024

key for the success of the Belle II software project.

6. References

] Abe T et al., arXiv:1011.0352 [physics.ins-det]

] Abashian A et al., Nucl. Instrum. Meth. A 479 117

] https://www.gnu.org/software/gcc/

] http://clang.llvm.org/

| https://software.intel.com/intel-compilers/

| https://www.python.org/

] http://www.scons.org/

| http://www.cmake.org/

| R. Brun and F. Rademakers, Nucl. Instrum. Meth. A 389 (1997) 81.

| S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506 (2003) 250.
] D. J. Lange, Nucl. Instrum. Meth. A 462 (2001) 152.
| https://subversion.apache.org/

] http://viewvc.org/

| http://git-scm.com/

] http://astyle.sourceforge.net/

| https://pypi.python.org/pypi/pep8

| https://pypi.python.org/pypi/PythonTidy/
| https://pypi.python.org/pypi/autopep8

| http://www.stack.nl/ dimitri/doxygen/

| http://twiki.org/

] http://www.redmine.org/

| https://code.google.com/p/googletest/

| http://valgrind.org/

] http://buildbot.net/

| http://cppcheck.sourceforge.net/

