Geant4e Track Extrapolation in the Belle II Experiment

Leo Piilonen,Virginia Tech Thomas Kuhr, KIT Takanori Hara, KEK

on behalf of the Belle II Collaboration

CHEP 2013, Amsterdam

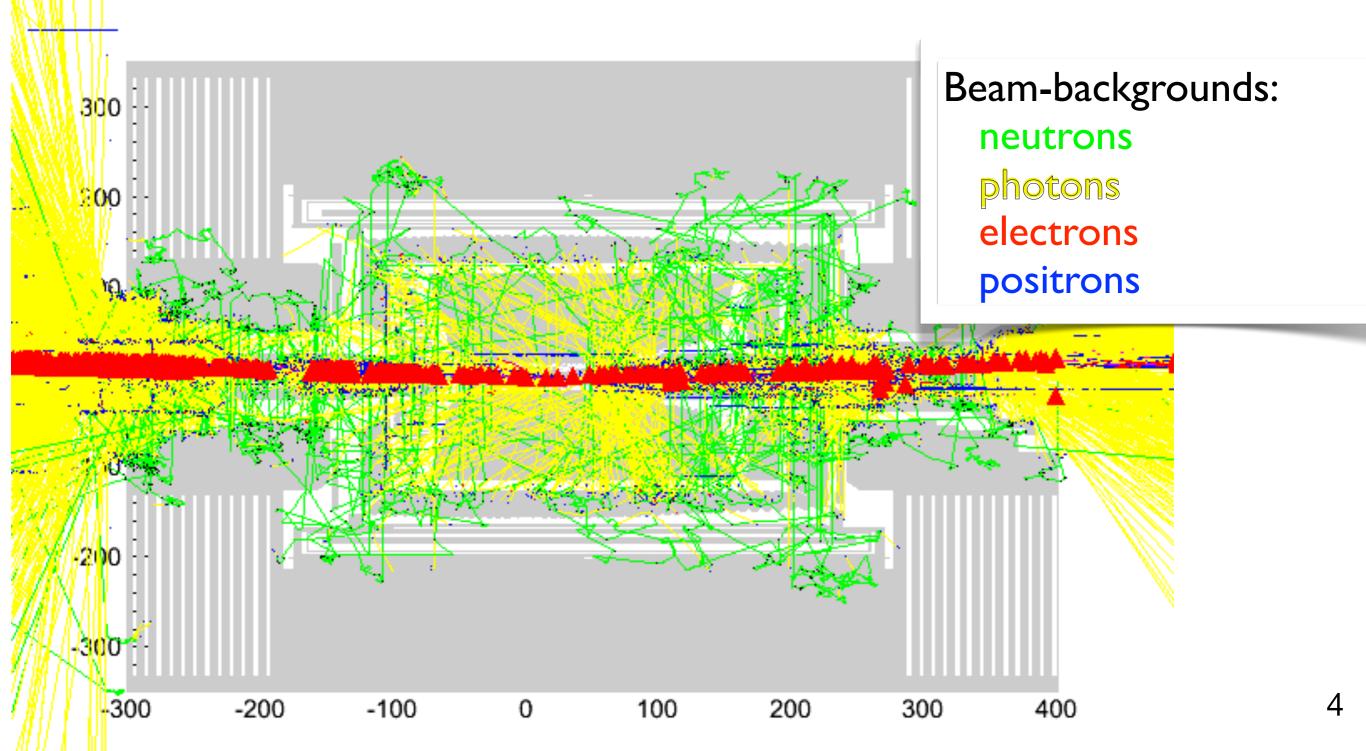
geant4e, a part of geant4, is used during event reconstruction (not simulation!). It computes

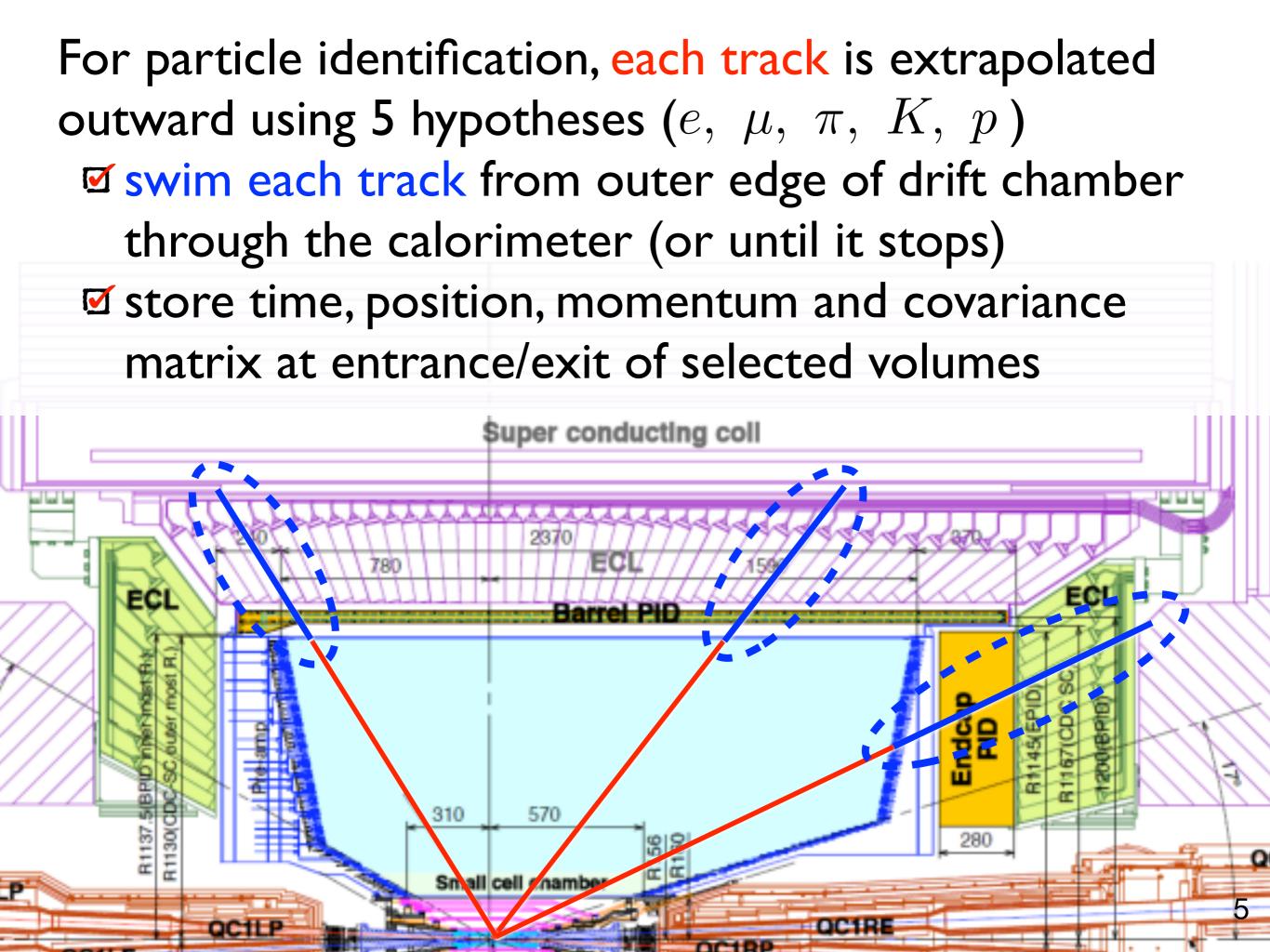
- In the average trajectory of a charged track, assuming a local helix in local magnetic field for each step
- If the covariance matrix along this trajectory due to
 - multiple scattering
 - ionization
 - track curvature
- using C++ port of the geane code in geant3 (developed by the European Muon Collaboration)

During event reconstruction, use geant4e for track propagation outward from the drift chamber's exit; needed for particle identification

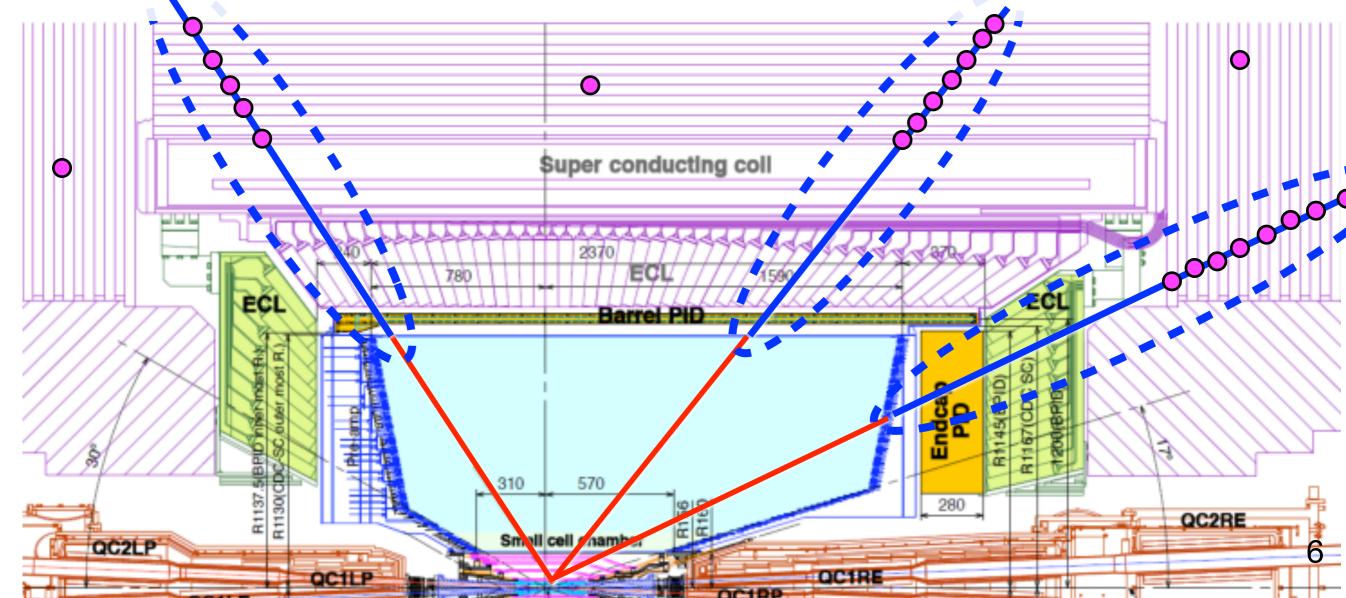
Vertex detectors
 Drift chamber
 Particle identifiers

e⁻ (7 GeV)


EM Calorimeter



 K_L and muon detector


GeV)

geant4 detailed model of the Belle II detector:
☑ non-uniform solenoidal magnetic field (~1.5 T)
☑ for geant4 simulation and geant4e track propagation

For muon identification, each track is extrapolated outward using µ hypothesis (but could use the other 4)
✓ swim each track through K_L-muon detector with Kalman fitting to matching hits and track adjustment
✓ store time, position, momentum and covariance matrix at entrance/exit of each layer

Geant4e and Geant4:

Belle II has two usage modes of geant4e:

✓ for real events: standalone

for simulated events: coexisting with geant4, since we do simulation and reconstruction in one pass

Geant4e and Geant4, cont'd:

geant4e, as distributed, cannot be used with geant4:

- x incompatible particle lists
- x incompatible physics processes
- x conflicting usage of sensitive-detector geometry
- x distinct states when calling RunManager
- x incompatible user actions (SteppingAction etc)

geant4e, as distributed, is limited:

x propagates only electrons, positrons and photons

We have resolved these issues and extended geant4e. All mods are done <u>outside</u> the geant4 code base.

1) Particles and Physics Processes:

- PhysicsList is user's concrete implementation of G4VUserPhysicsList, and must define:
 - ConstructParticle()
 - ConstructProcess()
 - SetCuts()
- □ geant4 and geant4e use distinct PhysicsLists.
- Significant overhead to change PhysicsList when switching between geant4 and geant4e so avoid this!
- ☑ Define a combined PhysicsList that incorporates geant4 and geant4e functionality.

1) Particles and Physics Processes, cont'd:

- ☑ ConstructParticle() defines
 - gamma e+ e- mu+ mu- pi+ pi- pi0 kaon+ kaon- kaon0 kaon0L kaon0S proton anti_proton neutron anti_neutron geantino chargedgeantino opticalphoton etc. (the standard particles)
 - g4e_gamma g4e_e+ g4e_e- g4e_mu+ g4e_mug4e_proton g4e_antiproton g4e_pi+ g4e_pig4e_kaon+ g4e_kaon with PIDcode = 100000000 + stdPIDcode

PhysicsList in the distributed geant4e defines only three particles (gamma e+ e-) and these conflict with geant4 usage.

1) Particles and Physics Processes, cont'd:

☑ SetCuts() does

SetCutsWithDefault() using default = 1.0*mm for the standard particles

 SetCutsWithDefault() using default = 1.0E9*cm for the new g4e_* particles

2) Common detector geometry:

- During simulation, G4SteppingManager calls user code to process steps through "sensitive" detector volumes and record the hits therein.
- During reconstruction, our custom version of StepLengthLimitProcess() disables this behaviour:

G4ParticleChange aParticleChange;

```
G4VParticleChange*
ExtStepLengthLimitProcess::PostStepDoIt( const G4Track& track,
const G4Step& )
```

```
aParticleChange.Initialize( track );
aParticleChange.ProposeSteppingControl( AvoidHitInvocation );
return & aParticleChange;
```

3) geant4e navigation and "target" geometry:

- ☑ Do not use the special G4ErrorPropagationNavigator in geant4e. Instead, use G4Navigator defined in geant4.
- geant4e requires a "target" surface; its navigator [which we avoid] checks if the track crosses this surface after each step. We do this check in our steering code.
- The available surfaces are not adequate for our needs because they are not closed.
- ☑ Our custom version of G4ErrorCylSurfaceTarget is a closed surface that includes the cylinder endcaps.

4) Distinct run states and user actions:

- During our geant4e initialization, detect the presence of geant4 by a non-empty G4ParticleTable.
- If geant4e is running standalone, there is no need to preserve the geant4 state from one event to next.
- If geant4e co-exists with geant4, restore the geant4
 idle state and save pointers to its UserActions:

InitGeant4e();

- G4StateManager::GetStateManager()->SetNewState(G4State_Idle); m_savedTrackingAction = UserTrackingAction;
- m_savedSteppingAction = UserSteppingAction;

4) Distinct run states and user actions, cont'd:

During reconstruction of one event:

if (geant4e co-exists with geant4) { // hide geant4 actions
 UserTrackingAction = NULL;
 UserSteppingAction = NULL;
}

extrapolate all tracks in the event using g4e_* particles;

if (geant4e co-exists with geant4) { // restore geant4 actions
 UserTrackingAction = m_savedTrackingAction;
 UserSteppingAction = m_savedSteppingAction;
}

5) Other geant4e modifications:

- The distributed G4ErrorPropagatorManager replaces the standard G4Navigator with G4ErrorPropagationNavigator.
 Our custom version avoids this.
- ✓ The distributed MagFieldLimitProcess assumes that the magnetic field is along the *z* axis. Our custom version removes this assumption.
- The distributed G4EnergyLossForExtrapolator defines energy-loss processes for electrons and positrons.
 Our custom version extends these to muons, pions, kaons, and protons (both signs).

6) Muon identification:

- Extrapolate each reconstructed track from the CDC exit point into the KLM (barrel and endcap) using geant4e
 ★ default is muon hypothesis only (but others are allowed)
- Look for matching 2D hit upon crossing each KLM layer
- Kalman fitting: If there is a matching 2D hit in the layer, use its position and uncertainty to adjust the position and direction of the extrapolated track before continuing to the next layer
- Accumulate χ^2 between in-plane hit and track positions
- Finish extrapolation when the track exits the KLM or stops

6) Muon identification, cont'd:

- Use two variables to distinguish muon from hadron in KLM
 - \star χ^2 per degree of freedom for in-plane position differences of all matching 2D hits and the extrapolated track ($\chi^2_{\rm dof}$)
 - \star difference in range between outermost matching 2D hit and the extrapolated track ($\Delta\ell$)
- Consult two-dimensional PDFs: $\star \mathcal{P}^{\pm}_{\mu}(\Delta \ell, \chi^2_{dof})$ for muons $\star \mathcal{P}^{\pm}_{\pi}(\Delta \ell, \chi^2_{dof})$ for pions $\star \mathcal{P}^{\pm}_{K}(\Delta \ell, \chi^2_{dof})$ for kaons
- Compute likelihood of the track being a muon vs hadron: $\star \mathcal{L} \equiv 0$ if no matching 2D hits; otherwise, ...

$$\star \mathcal{L} = \frac{\mathcal{P}_{\mu}}{\mathcal{P}_{\mu} + \mathcal{P}_{h}} \quad \text{(where } h \in \{\pi, K\}\text{)}$$

Conclusion

In the Belle II software library, we have implemented geant4e track propagation for particle identification (in the inner-PID detectors) and muon identification (in the KLM) during event reconstruction, either standalone or co-existing with geant4 event simulation:

- merged particle list including standard and custom g4e_* particles
- distinct physics processes for standard and custom g4e_* particles
- ☑ no hit invocation in sensitive volumes for geant4e
- distinct states and user actions during event processing
- Main Kalman fitting for muon extrapolation