Low-momentum track finding in Belle II

J. Lettenbichler, R. Frühwirth, M. Nadler

5
Institute of High Energy Physics, Austrian Academy of Sciences

1. The Belle II Silicon Vertex Detector

- Two pixel layers
- Four double-sided silicon layers

2. Motivation

- Important physics channel with low-momentum pion:

$$
\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}
$$

- Define region of interest for pixel readout, data reduction

3. Track finding strategy
Global structure
- Stepwise reduction of combinatorics
- Cellular automaton (CA) for finding track candidates
- Kalman filter for computing quality indicators
- Hopfield network for eliminating overlapping candidates

Schematic view of the low momentum track finder in Belle II
Unsorted hits from tracks, background, ghost coming from an event

O Sector setup - 1-hit filter
filters by set of compatible sectors, allows momentum dependent setups

O Segment finder - 2-hit filter
filters by distance, min\&max, including virtual Segment

O Neighbour finder - 3-hit filter
filters by angle and Δ-distance min\&max

filters by zigZag, $\Delta \mathrm{pT}$
∇ Kalman filter
Kalman filter
not implemented yet

Segment finder

- An allowed hit combination forms a segment
- Segments are filtered my minimal and maximal length
- Virtual segments connect the innermost hits with the interaction point

Neighbour finder

- Two segments connected by a common hit are called neighbours
- Neighbours are filtered by minimal/maximal angle and difference in length

Cellular automaton

- The cellular automaton assigns states to each segment in a discrete time evolution process
- A string of neigbouring segments with decreasing states is a track candidate

Track candidate filter

- Candidates that form zig-zag patterns are discarded
- Candidates with large changes in p_{T} are discarded

Track quality

- A quality indicator (QI) is computed for each track candidate
- Currently this is the number of hits in the track
- Later the QI will be computed by a preliminary track fit

Hopfield network

- Hopfield network finds best subset of compatible track
- Tracks with large quality indicators are preferred

4. An example

5. Results

- Efficiency for two transverse momentum ranges, with and without PXD
- Low: $60 \mathrm{MeV} / \mathrm{c}-70 \mathrm{MeV} / \mathrm{c}$, 3 layers (w/o PXD)
filters activated: distZ,distNorm3D, distDeltaZ, anglesRZ, deltaPt, zigZag
- Low: 60MeV/c - $70 \mathrm{MeV} / \mathrm{c}$, 5 layers (with PXD)
filters activated: dist3D, distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY, anglesRZ, deltaPt, zigZag
- High: $70 \mathrm{MeV} / \mathrm{c}-100 \mathrm{MeV} / \mathrm{c}, 4$ layers (w/o PXD)
filters activated: distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY, anglesRZ, deltaPt, zigZag
- High: $70 \mathrm{MeV} / \mathrm{c}-100 \mathrm{MeV} / \mathrm{c}$, 6 layers (with PXD)
filters activated: dist3D, distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY,
anglesRZ, deltaPt, zigZag
- 1000 events with 10 and 20 tracks each, no noise
- No Kalman filter, no Hopfield network

Momentum range	\# of layers	\# of tracks		results post TCC		
			clean	cont.	lost	rec $_{\text {tot }}$
Low		10000	88.9%	0.48%	10.7%	89.3%
		20000	88.2%	1.1%	10.8%	89.2%
Low		10000	99.6%	0.1%	0.3%	99.7%
		20000	99.1%	0.3%	0.6%	99.4%
High		10000	99.6%	0.1%	0.4%	99.6%
		20000	99.5%	0.1%	0.4%	99.6%
High		10000	99.6%	0.1%	0.3%	99.7%
		20000	99.4%	0.2%	0.4%	99.6%

