Low-momentum track finding in Belle II

J. Lettenbichler, R. Frühwirth, M. Nadler

Institute of High Energy Physics, Austrian Academy of Sciences

1. The Belle II Silicon Vertex Detector

- Two pixel layers
- Four double-sided silicon layers

Segment finder

• An allowed hit combination forms a segment

- Segments are filtered my minimal and maximal length
- Virtual segments connect the innermost hits with the interaction point

Neighbour finder

• Two segments connected by a common hit are called **neighbours**

• Neighbours are filtered by minimal/maximal angle and difference in length

Cellular automaton

• The cellular automaton assigns states to each segment in a discrete time evolution process

2. Motivation

• Important physics channel with low-momentum pion:

 $\mathrm{D}^{*+}
ightarrow \mathrm{D}^{0} \pi^{+}$

• Define region of interest for pixel readout, data reduction

3. Track finding strategy

Global structure

- Stepwise reduction of combinatorics
- Cellular automaton (CA) for finding track candidates
- Kalman filter for computing quality indicators
- Hopfield network for eliminating overlapping candidates

Schematic view of the low momentum track finder in Belle II

- The arrows represent a

Clean

TC's

Unsorted hits from tracks, background, ghost coming from an event

• A string of neigbouring segments with decreasing states is a track candidate

Track candidate filter

- Candidates that form zig-zag patterns are discarded
- Candidates with large changes in $p_{\rm T}$ are discarded

Track quality

- A quality indicator (QI) is computed for each track candidate
- Currently this is the number of hits in the track
- Later the QI will be computed by a preliminary track fit

Hopfield network

- Hopfield network finds **best subset** of **compatible** track
- Tracks with large quality indicators are preferred

4. An example

Sector setup - 1-hit filter 0 filters by set of compatible sectors, allows momentum dependent setups

Segment finder - 2-hit filter Ο filters by distance, min&max, including virtual Segment

Neighbour finder - 3-hit filter Ο filters by angle and Δ -distance min&max

Sectors

- Cells of CA are track segments connecting two hits
- Sensors are divided into sectors
- This allows for tighter cuts in the segment filters and reduces the number of allowed hit

5. Results

- Efficiency for two transverse momentum ranges, with and without PXD
- -Low: 60MeV/c 70 MeV/c, 3 layers (w/o PXD) filters activated: distZ, distNorm3D, distDeltaZ, anglesRZ, deltaPt, zigZag
- Low: 60MeV/c 70 MeV/c, 5 layers (with PXD) filters activated: dist3D, distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY, anglesRZ, deltaPt, zigZag
- High: 70MeV/c 100 MeV/c, 4 layers (w/o PXD) filters activated: distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY, anglesRZ, deltaPt, zigZag

combinations

- High: 70MeV/c 100 MeV/c, 6 layers (with PXD) filters activated: dist3D, distXY, distZ, distNorm3D, distDeltaZ, angles3D, anglesXY, anglesRZ, deltaPt, zigZag
- 1000 events with 10 and 20 tracks each, no noise
- No Kalman filter, no Hopfield network

Momentum range	# of layers	# of tracks	results post TCC			
			clean	cont.	lost	rec _{tot}
Low	3	10000	88.9%	0.48%	10.7%	89.3%
		20 000	88.2%	1.1%	10.8%	89.2%
Low	5	10000	99.6%	0.1%	0.3%	99.7%
		20 000	99.1%	0.3%	0.6%	99.4%
High	4	10000	99.6%	0.1%	0.4%	99.6%
		20 000	99.5%	0.1%	0.4%	99.6%
High	6	10000	99.6%	0.1%	0.3%	99.7%
		20 000	99.4%	0.2%	0.4%	99.6%

CHEP 2012, New York

