Status of GEANT4 simulation

Takanori Hara (KEK)

Contents

Introduction of experiment Geant4 simulation Standalone Geant4 Geant4 within software framework Summary

B-Factory aimed for

KEKB Accelerator + Belle Detector

Confirmation of CP violation

Integrated Luminosity(log) 1000 ~800M BB pairs _ 800 ل 300 $+ \frac{B^0}{B^0}$ Y(15) : ~6 fb⁻¹ Y(25) : ~7 fb⁻¹ Y(35) : ~3 fb⁻¹ Events / ps (good tags) 250 600 200 Y(45) : ~720 fb⁻¹ Y(55) : ~100 fb⁻¹ 150 400 100 off-reso.: remnant 50 200 ~950 fb -2 0 At (ns) 0 1998/1/1 2002/1/1 2004/1/1 2000/1/1 2006/1/1 2008/1/1 2010/1/1 Kobayashi-Maskawa theory is confirmed. But this is not enough to explain the Universe Other source of CP violation is implied ...

New B-Factory aims for

6

8

Geant4

KEKB/Belle will continue taking data until 2010?? SuperKEKB/Belle II will start taking data from 2013

. IR Design (e.g. beam background simulation): standalone G4 . Detector Optimization (e.g. PID, tracking): w/ soft. frameworks

But now we have two software frameworks at this moment,

. roobasf (upgraded version of Belle Analysis Frame)

. ILC framework (Mokka/Marlin)

Geant4 is implemented in each framework, but there is no campatibility

combining good features from both sides ...

Simulation + Reconstruction

ILC Software Framework

Standalone Geant4 simulation or Geant4 with roobasf

Detector Background Component

Background component	w.r.t current Belle		
Synchrotron Radiation (upstream)	Lower? Higher? Smaller beam size at Q but large bending magnet		
Synchrotron Radiation (back-scatter)	Much lower -> 1/800 No QCS bending		
Radiative Bhabha	Much lower -> 1/40 Larger crossing angle but no QCS bending		
Touschek (intra-beam)	Much higher		
Beam-gas interaction	Higher Vacuum around IP will be worse		
	Higher current (x10-100)		

Beam-gas simulation

Beam-gas scattering: Bremsstrahkung $eN \rightarrow \gamma eN$ and Coulomb $eN \rightarrow eN$

1) Upstream Beam-gas scattering

Upstream beam-gas scattering causes beam energy loss. Then such beams may hit the beam-line component near IP and produce particle showers \rightarrow Affects to many (~all) detectors

This BG depends on the upstream vacuum level, beam-current, beamline optics, and beampipe apertures

2) Beam-gas scattering near IP

Beam-gas scattering near IP produces particles, and it may hit the detectors \rightarrow Affects to PXD, SVD, CDC, ... This BG depends on the vacuum level around IP (x10~100 worse)

Important to fix the IR design

Beam-gas simulation

1020

1/4 of the whole beamline is constructed in G4 simulation

IP

electron beam (physics process off)

Particle Identification (PID)

TOP counter

.TOP (Time of Propagation)

- . A kind of RICH counter
- . Cherenkov radiator + time sensitive screen
- . Position $(x, y) \rightarrow$ Position + time (x, y)
- .very compact & simple

TOP counter

Completely Geant4 based

Multiple scattering d-ray Electromagnetic/Hadronic shower Generation/Propagation of Cherenkov ph.

Good agreement in: Number of detected photons Detected time distribution Disagreement in: Spread of generated photon positions

g4superb A-RICH

19

. A better π/K separation for a wider mom. range to π/K over c

threshold-type Cherenkov detector (Belle) does not provide sufficient separation for high-P particle. esp. high-P(~4GeV/c) region for $B \rightarrow \pi \pi$, K π

. limited available space (Forward region)

Proximity focusing ring-imaging Cherenkov counter (RICH)

g4superb A-RICH

20

. Geometry description

- . Particle tracking through A-RICH
- . Cherenkov ph. generation in the aerogel
 - and the quarz window of the ph. detector
- . Rayleigh scattering of the photons in the aerogel
- . Photons tracking through the quartz windown of the photon detector
- . Photon detectiion in the active area

Geometry at the moment hardcoded with the main parameters read from the text file

. Currently optimizing the geometry and materials

ECL (Electromagnetic Calorimeter)

22

ECL (Electromagnetic Calorimeter)

Geant4 with ILC framework

Mokka - BelleExp Geometry

• **BelleExp geometry** currently, only a tracker implemented

- *TubeBelle, TubeBelleII* geometry driver of a beam pipe
- *SVDBelle, VXDBelleII* geometry driver of a vertex detector (for BelleII: PXD and SVD detectors defined together)
- CDCBelle, CDCBelleII geometry driver of a central drift chamber

- Sensitives:

- SVDSens (Belle), VXDSens (BelleII)
- *MaterialSens* (for mat. budget studies)
- CDCSD02 (both)
- Hits:
 - VXDHit (Belle, BelleII), TRKHit (CDC)
- Mag. field :
 - *Field00* (both) 1.5 T in z

Mokka - Beam Pipe Geometry

TubeBelle & TubeBelleII geometry drivers that describe a beam pipe for Belle & BelleII

- Cylindrical, onion-like structure, with option to be rotated around Y axis:

• "vacuum"

- inner gold layer (shielding against soft SR): 10 μ m
- inner beryllium wall: 0.6 mm
- cooling gap (filled with paraffin): 0.5 mm
- outer beryllium wall: 0.35

	$\boldsymbol{R}_{_{min}}$ [mm]	\boldsymbol{R}_{max} [mm]
Belle	14.99	16.45
BelleII	9.99	11.45

Mokka - Belle II PXD Geometry

VXDBelleII: geometry driver for BelleII VXD (pixel part: PXD + strip part: SVD)
 Description: 2 layers → ladders → Si sensors (50 µm) + rims (450 µm) + support (400 µm) + 12 switchers

	R [mm]	# ladders	support
Pxl layer 1	13.00	8	no
Pxl layer 2	22.00	12	yes

Mokka - Belle II PXD Geometry

VXDBelleII: detail of pixel part of VXD detector

- Layers arranged in wind-mill structure
- Option: rotate pixel layers together with beam pipe

Mokka - Belle II SVD Geometry

VXDBelleII: geometry driver for VXD of Belle II (pixel part: PXD & strip part: SVD)

- <u>Description of SVD</u>: 4 layers in barrel part + 3 layers in "forward" region; all arranged in wind-mill structure; only silicon implemented now!
 - <u>Active part</u>: Si layers \rightarrow Si ladders \rightarrow Si sensors DSSDs (300 μ m thick)
 - <u>Passive part</u>: Si rims around sensors $(300 \mu \text{m thick})$

	R [mm]	# ladders :	# DSSDs
Strip layer 31 – barrel	38	8	2
Strip layer 41 – barrel	80	10	2
Strip layer 42 – barrel-slanted	66	14	3
Strip layer 51 – barrel	115	17	4
Strip layer 52 – barrel-slanted	95.5	10	1
Strip layer 61 – barrel	140	14	1
Strip layer 62 – barrel-slanted	114	17	1

Mokka - Belle II CDC Geometry

CDCBelleII: geometry driver describing central drift chamber

- Aluminium cylinder with cone-shaped inner parts filled with gas He/C_2H_6 (50:50)

Radi us – inner boundary	361 mm
Radius – inner-middle boundary	150 mm
Radius – outer boundary	1150 mm
Radius – innermost sens. wire	172 mm
Radius – outermost sens. wire	1120 mm
Number of sensitive layers	4H

Mokka - Tracker Implementation

• Tracker geometry:

- Pixel layers (PXD)
- Strip layers (SVD)
- CDC
- Mokka simulation only
 - incident particles → tracks produced
 → hits generated → hit collections (+ true MC information) created & saved in LCIO
 - digitization (simulation of detector response) realized at the level of Marlin toolkit (see next slides)

Mokka - Belle SVD Geometry

• *SVDBelle*: driver used for current Belle vertex detector (SVD version 2)

- <u>Description</u>: 4 layers in barrel part arranged in wind-mill structure
- <u>Active part</u>: Si layers → Si ladders → Si sensors DSSDs (300 μ m thick)
- Passive part:
 - Si rims around sensors, i.e. passive Si part (300μ m thick)
 - Kaptons (polyimide + copper)
 - Zylon ribs
 - CRFP bridge & rims

	R [mm]	# ladders	# DSSDs
Strip layer 1 – barrel	20	6	2
Strip layer 2 – barrel	43.5	12	3
Strip layer 3 – barrel	70	18	5
Strip layer 4 – barrel	88	18	6

Marlin - PXD Digitizer

SiPxlDigi: MarlinReco pixel digitizer – based on A. Raspereza's VTXDigitizer
 <u>Input:</u> LCIO SimTrackerHits → <u>Output:</u> LCIO TrackerHits

- <u>Processes:</u>

- Global to local ref. system transformation
- Ionization points generated: energy loss fluctuation added \rightarrow e-h pairs along the path created
- Signal points generated: e^7 drift performed $\rightarrow e^7$ Lorentz shift in mag. field of 1.5 T calculated $\rightarrow e^7$ diffusion calculated
- Digits produced: pixels with signal bigger than threshold (2 x noise) found
 - noise for pixels set = 100 e
 - noise for strips set = 1200 e
- Local to global ref. system transformation
- Hits produced + resolution calculated
- Background generated

Marlin - SVD Digitizer

SiStripDigi: MarlinReco strip digitizer

- <u>Input:</u> LCIO SimTrackerHits \rightarrow <u>Output:</u> LCIO TrackerHits
- **<u>Geometry</u>**: Mokka hits transformation from global to local reference system
- <u>Physical processes:</u>
 - Generation of e-h pairs (E_{eh} =3.65 eV)
 - Drift of e-h pairs in electric field
 - Diffusion of e-h due to multiple collisions
 - Lorentz shift of e-h pairs in magnetic field
 - Mutual microstrip cross talks (wrt. AC or DC)
 - Noise: sensor, electronics ...
- <u>Clustering:</u> (based on COG algorithm)
 - Cluster finding (seed strips + their neighbours)
 - Cluster transformation back to global ref. s.

Tracking: Reconstructed Decay

Tracking: Impact Parameter Resolution

Definition of impact parameter $d_0 \& z_0$

37

Summary

O Geant4 is the basic and practical tool for Beam background simulation for IR design Performance study for Particle ID detectors Detector optimization

in Belle-II experiment

• Geant4 works well with roobasf/ILC framework unified framework is proposed and Geant4 module has to be fit to this framework Common event data model, Mokka I/F, Geometry handling (Gearbox ?), ... have to be prepared Geometry handling is a good start point for Geant4 We have already start this.