

Tau LFV at Belle II

Francesco Tenchini on behalf of the Belle II Collaboration 07/12/2016 HINT2016

- Theoretical motivations for τ LFV searches
- SuperKEKB and Belle II
- τLF(U)V at Belle II
 - $\tau \rightarrow \mu \gamma$
 - B⁺→ K⁺τl
- Conclusions and Outlook

 ν_{τ}

W

 ν_{μ}

au

- Lepton flavour is conserved in the Standard Model (accidental symmetry)
- Neutrino oscillations
 → first sign of neutral LFV beyond the SM
- Also generates charged LFV, but at a non measurable level:

$$\mathcal{B}_{\nu SM}(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| U_{\tau i}^* U_{\mu i} \frac{\Delta m_{3i}^2}{m_W^2} \right|^2 < 10^{-40}$$

3

→ Powerful probe for new physics

 μ

- Belle II
- Predicted in many theoretical models $\mathcal{O}\left(10^{-7} \sim 10^{-10}\right)$

Model	Reference	τ→μγ	τ→μμμ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10-14
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68 (2003) 033012	10 ⁻⁸	10 -10
mSUGRA+seesaw	PRD 66 (2002) 115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7

Sensitivity of various channels to cLFV is model-dependent

 → discriminate theories by comparing branching ratios
 and spectra across multiple modes

• Model-independent approach with an effective Lagrangian:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} O_i^{(6)} + \dots$$

τ LFV at B Factories

- Large τ-pair production cross section at Y(4S) (σ~0.9 nb)
- Can probe a large variety of modes

THE UNIVERSITY OF MELBOURNE

SuperKEKB and Belle II

KEKB → SuperKEKB (x40 luminosity)

- Smaller interaction point
- Increased current

Belle → Belle II (x50 int. luminosity)

First beams & commissioning in 2016

(4)

 With the upgraded accelerator come increased event rates and beam background:

- ... and intra-beam (Touschek) scattering
- Affects detector design and resolutions
 - Pileup from charged showers
 - Shift of calorimeter energies

The Belle II Detector

KL and muon detector (KLM): Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter (ECL) CsI(TI), waveform sampling (barrel) Pure CsI (end-caps) later

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector (PXD + SVD) 2 layers Si Pixels + 4 layers Si strips

> Central Drift Chamber (CDC) He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (forward)

positron (4GeV)

Target integrated luminosity: 50 ab⁻¹

τ LFV projections for Belle II

Extrapolation of existing results to 50 ab⁻¹ (in the no-background hypothesis)

Constraints from High Energy

- B(h $\rightarrow \tau\mu$) = (0.77 ± 0.66)% by recasting existing ATLAS h $\rightarrow \tau\tau$ results
- Implied limit on $Y_{\tau\mu}$ coupling
- Contributes to LQ, LL and (at loop level) dipole modes:

Constraints from High Energy

- CMS best fit B(h $\rightarrow \tau \mu$) = (0.84 $^{+0.39}_{-0.37}$)% $\rightarrow 2.4\sigma$ excess
- Sensitivity UL: $B_{95}(h \rightarrow \tau \mu) < 1.51\%$

LFV Yukawa coupling tested by both LHC and Belle II

- Blinding box approach with BG evaluated outside the signal region
- Observables space: $\Delta E = E_{CM}^{(\mu+\gamma)} + E_{beam}/2$ (expected $\Delta E = 0$) — Signal-side m_{inv} (expected $m_{inv} = m_{\tau} = 1.777 \text{ GeV/c}^2$)
- Signal regions after BG rejection cuts data (points) and signal MC (shaded):

τ→µγ at Belle II

- Sensitivity study using Belle II MC
- Event signature:
 - signal τ : μ track + γ
 - -tag τ : generic (non- μ)
- Background:
 - $\begin{array}{c} -\tau \rightarrow \mu \nu \nu \\ -\tau \rightarrow e \nu \nu \\ -\tau \rightarrow \pi \nu \end{array} \right\} + \gamma$
 - $-ee \rightarrow ee/\mu\mu (\gamma)$
 - —ee → hadronic

 μ^+ $\mu^{\gamma}_{\tau^+}$ e^+ Center-of-mass momentum of signal-side track Belle II MC 0.18 Background: u u Signal: µ γ 0.16 Background: µ v , v , Background: d d 0.14 Background: # v , Background: c c 0.12 Background: e v , v , Background: s s 0.1 Background: B B Background: r (generic) 0.08 Background: $B^0 \overline{B}^0$ Background: µµ(y) 0.06 Background: e e (y)

Գ

0.04

0.02

4

5

Momentum (GeV/c)

6

з

2

1

- Beam background is incorporated
- Observables for background rejection:
 - four-momentum,
 - angular distribution,
 - event topology and shape (thrust vector magnitude, momentum flow, Fox-Wolfram moments, ...)

Study elliptical signal region around mean:

- Signal efficiency $\epsilon_{signal} = 4.59\%$
- -No background \rightarrow n_{BG}< 2.30 at 90% CL (Poisson)

x 10 ³⁴	80 x 10 ³⁴	-
5.09%	1 500/	
0.0070	4.39%	
10	-	\rightarrow Belle II (50 at
5 x10 ⁻⁸	2.726 x10 ⁻⁸	5.452 x10
5 x10 ⁻⁸	2.726 x10 ⁻⁸	5.452 x10
	10 5 x10- 8	10 - 5 x10-8 2.726 x10-8

- Background-free search (even with high beam BG)
- Sensitivity comparable with Belle
- Naive extrapolation to 50 ab⁻¹

τLFUV

- The SM is built with the assumption of universality
- Measurements of $R(D^{(*)})$ show a 4 σ deviation from SM predictions
- Sensitive to NP couplings with Higgs-like particles
- Interesting to study τ LF(U)V

- b→s transitions are penguin/box suppressed
- Signs of deviations have been found there in the past; e.g. at LHCb:

$$R(K) = \frac{Br(B^+ \to K^+ \mu^+ \mu^-)}{Br(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074}(stat.) \pm 0.036(sys.)$$

 Processes such as B+→ K+Tl sensitive to NP contributions, e.g. Leptoquarks

 If such a state mediating the transition existed, we could observe it at Belle II

	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$
$O_{S,V}^{4\ell}$	_	—
OD	\checkmark	\checkmark
O_V^q	✓ (I=1)	$\checkmark(\mathrm{I=0,1})$
O_S^q	✓ (I=0)	$\checkmark(\mathrm{I=0,1})$
O _{GG}	\checkmark	\checkmark
O^q_A	—	—
O_P^q	—	—
$O_{G\widetilde{G}}$	_	_

$B^+ \rightarrow K^+ \tau I$ in Belle II

- Feasibility study based on cut and count approach
- Past search on 429 fb⁻¹ BaBar data (PRD 86, 012004 (2012))

	$\mathcal{B}(B \to h \tau \ell) \; (\times 10^{-5})$		
Mode	central value	90% C.L. UL	
$B^+ \to K^+ \tau \mu$	$0.0 \ ^{+2.7}_{-1.4}$	< 4.8	
$B^+ \to K^+ \tau e$	$-0.6 \ ^{+1.7}_{-1.4}$	< 3.0	
$B^+ \to \pi^+ \tau \mu$	$0.5 {}^{+3.8}_{-3.2}$	< 7.2	
$B^+ \to \pi^+ \tau e$	$2.3 \ ^{+2.8}_{-1.7}$	< 7.5	

- Simulated signal events:
 - -Bsig: $B^+ \rightarrow K^+ \tau^{\pm} I^{\mp}$
 - -Btag: generic
- Background events: BB/qq generic MC

Generated MC

MC	$\sigma \ [nb]$	Nevents	\mathcal{L}_{int}
B^+B^-	0.55	100×10^{6}	$180 \ fb^{-1}$
$B^0 ar{B^0}$	0.55	100×10^6	$180 \ fb^{-1}$
$u \bar{u}$	1.61	50×10^6	$31 fb^{-1}$
$d ar{d}$	0.40	50×10^6	$130 \ fb^{-1}$
$sar{s}$	0.38	$50{ imes}10^6$	$130 \ fb^{-1}$
$c\bar{c}$	1.30	50×10^6	$38 fb^{-1}$

Selection and Outlook

Indirect Tau Mass

Tag B

- Fully reconstruct tag side in the B \rightarrow D⁰X_{had} modes with a multivariate classifier ($\varepsilon_{tag}=0.83\%$)
- Keep the one with the highest MVA likelihood.

Signal B

- B_{sig} from rest of the event after tag-side reconstruction.
- Signal region around reconstructed m_τ peak.
- Reject background with cuts on: m(Kπ), event shape variables, vertex fit quality...

Available data set is **x100** of BaBar (2012)

→ potential **x10** improvement (assumes dominant BG)

- τLFV is a powerful tool to search for new physics.
- Belle II will effectively probe a wide set of decay channels.
- Preliminary study for $\tau \rightarrow \mu \gamma$:

 $-B_{90}(\tau \rightarrow \mu\gamma) < 2.726 \times 10^{-8}$ estimated sensitivity at 1 ab⁻¹

-effectively rejects beam BG (comparable to Belle).

-Naive extrapolation: $B_{90}(\tau \rightarrow \mu \gamma) < 5.452 \times 10^{-10}$ at 50 ab⁻¹

- LFUV feasibility study for B⁺→ K⁺τI with a fully reconstructed tag using a multivariate classifier.
 - Potential x10 sensitivity improvement of previous result.

BACKUP

Belle II Schedule

- Phase 1 (2016, complete):
 - Accelerator commissioning
 - No detector
- Phase 2 (start of 2018):
 - Partial detector
 - Background studies
 - First physics
- Phase 3 (end of 2018):
 - Full detector
 - Belle II run

Background Rejection

26

Background Rejection

 $ee \rightarrow \mu\mu$

Centre-of-mass momentum of signal-side track

Francesco Tenchini

 $ee \rightarrow ee$

Centre-of-mass momentum of signal-side track

27

$\tau \rightarrow \mu \gamma$: After Selection

Event type	Events projected (scaled to 1ab-1)	After selection (scaled to 1ab ⁻¹)	Signal Efficiency
τ±→μ±γ	83	6	7.23%
τ±→μ±ν _τ νμ	159,997,900	163	
τ±→π±ντ	334,056,500	40	
T±→e±v _T v _e	163,857,700	0	
<u>e+e-→μ+μ-(γ)</u>	1,148,000,000	15	
$e^+e^-\rightarrow e^+e^-(\gamma)$	300,000,000,000	0	
e+e-→B+B-	550,000,000	0	Tot. background
$e^+e^- \rightarrow B^0 \overline{B}^0$	550,000,000	0	events (for 1ab-1)
e+e-→aā	3,690,000,000	15	233

Sample N-1 plots

B+ → K+τ-(nπ⁰π⁻)μ+

Impact of each selection after applying the rest of the cuts