

# Prospects for Rare Decays at Belle II

#### Saurabh Sandilya (On Behalf of the Belle II Collaboration)

#### **Outline**

- Motivation and Introduction (Belle II and SuperKEKB)
- $b \rightarrow (s,d) \gamma$
- $b \rightarrow (s,d)|+|-$
- $b \rightarrow (s,d) vv$
- Double radiative decays
- Status and Summary

## Motivation

#### Success of B-factories:

- (Belle and BaBar) had a successful operational period with a total recorded sample over 1.5 ab<sup>-1</sup> (1.25 x 10<sup>9</sup> B-meson pairs).
  - Observation of CPV in B meson system and confirmation of CKM picture.
  - Still room for NP.

#### Advantages of SuperKEKB and Belle II



- Very clean sample of quantum correlated B-meson pairs.
- Low background environment  $\rightarrow$  efficient reconstruction of neutrals ( $\pi^0$ ,  $\eta$ , ...)
- Dalitz plot analyses, missing mass analyses straight-forward.
- Systematics quite different from those at LHCb. If true NP is seen by one of the experiments, confirmation by the other would be important.
- Belle II goal: to increase the sample sizes over what Belle has achieved by a factor of 50 (> 5.0 x 10<sup>10</sup> B-meson pairs).

## SuperKEKB

- Upgraded from KEKB
  - which is the world's highest luminosity e+e- machine.
- Design Luminosity :  $8 \times 10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>
  - 40 times larger than KEKB.
    - 20 times smaller beam size
    - 2 times larger beam current
  - Large number of upgrades to RF, magnet, vacuum, etc. systems
- Asymmetric energy : 7GeV(e-) × 4GeV(e+)
  - Boost factor smaller to reduce beam background.
- Accelerator commissioning : June 2016 (successful.)
  - Phase 2: Starts in Nov 2017 (w/o vtx)
  - Phase 3 / Run 1: Fall 2018 (full det.)



**Colored : newly installed** 

### Belle II



- All sub-detectors are upgraded from Belle II:
  - Except for ECL crystals and a part of Barrel KLM

### Belle II : a closer look



- First Pixel layer closer to IP  $\rightarrow$  Better vertex resolution
- Larger Vertex Detector  $\rightarrow$  Better Ks efficiency for TDCPV in B  $\rightarrow$  K<sub>s</sub> $\pi^0\gamma$
- TOP and ARICH provide better K/ $\pi$  separation.
- Similar or better performance than Belle even under 20 times higher backgrounds.

# $\overline{B} \rightarrow X_q \gamma$

• The inclusive  $\overline{B} \rightarrow X_q \gamma$  decays provide important constraints on masses and interactions of many possible BSM scenarios.



- The inclusive  $\overline{B} \rightarrow X_q \gamma$  B.F. is sensitive to  $|C_7|$  and in the new physics models such as 2HDM type II and SUSY.
- Very precise prediction is available (for the CP- and isospin-averaged branching ratios) for  $E_{\gamma} > 1.6$  GeV :

$$\mathcal{B}_{s\gamma}^{SM} = (3.36 \pm 0.23) \times 10^{-4}$$
 6.8% precision  
 $\mathcal{B}_{d\gamma}^{SM} = (1.73^{+0.12}_{-0.22}) \times 10^{-5}$   
(Misiak et. al PRL 114, 221801 (2015))

# $\overline{B} \to X_q \gamma$



- Exp. and theory are consistent puts a strong limit on new physics.
- Evaluation of constraint on BSM scenario depends crucially on both the central value and the uncertainties on the B.F. (Misiak et. al PRL 114, 221801 (2015))
- The newest Belle result with fully inclusive method has only 7.3% uncertainty.
  - → Charged Higgs mass > 580 GeV at 95% CL

# $\overline{B} \rightarrow X_q \gamma$



- Mission at Belle II is to reduce the systematic uncertainty with huge data.
- Conservatively estimated, 3.9% total error will be reachable with 50 ab<sup>-1</sup> which is comparable to uncertainty due to nonperturbative effect (which is hard to reduce) in theory. [Misiak et. al PRL 114, 221801 (2015)].
- We can also measure the BF with  $E_{\gamma}$ >1.6GeV (w/o extrapolation).

# $\overline{B} \rightarrow X_q \gamma$ : Rate Asymmetry

- In addition to BFs, asymmetry in decay rates (isospin asym. and CP asym.) are also sensitive to BSM contributions.
- Isospin asymmetry (IA) can be defined as:

$$a_I^{\bar{0}-} = \frac{c_V^2 \,\Gamma(\bar{B}^0 \to \bar{V}^0 \gamma) - \Gamma(B^- \to V^- \gamma)}{c_V^2 \,\Gamma(\bar{B}^0 \to \bar{V}^0 \gamma) + \Gamma(B^- \to V^- \gamma)} \quad \text{for } c_{\rho^0}^2 = 2 \text{ and } c_{K*}^2 = 1$$

• To accumulate more statistics, CP-averaged IAs can be defined as:  $\bar{a}_I = (a_I^{\bar{0}-} + a_I^{0+})/2$ 

• The observable with reduced uncertainty  $\delta_{a_I} = 1 - \frac{\bar{a}_I(\rho\gamma)}{\bar{a}_I(K^*\gamma)} \sqrt{\frac{\bar{\Gamma}(B \to \rho\gamma)}{\bar{\Gamma}(B \to K^*\gamma)}} \left| \frac{V_{ts}}{V_{td}} \right|$ 

 $\delta_{aI}^{SM} = 0.10 \pm 0.11$  $\delta_{aI}^{exp} = -4.0 \pm 3.5 \rightarrow$  Can be improved at Belle II with more statistics.

The sensitivity of  $\delta_{al}$  to BSM physics has been studied in PRD 88 (2013), 094004 in a model-independent fashion

CKM-2016 | WG-3 | S. Sandilya

# $\overline{B} \rightarrow X_q \gamma$ : Rate Asymmetry

• The direct CP asymmetry in the time-integral rates is defined as:

$$A_{CP} = \frac{\Gamma(\overline{B} \to \overline{X}) - \Gamma(B \to X)}{\Gamma(\overline{B} \to \overline{X}) + \Gamma(B \to X)}$$

• SM predicts quite different asymmetries for  $\overline{B} \to X_s \gamma$  and  $\overline{B} \to X_d \gamma$ .

$$A_{CP}(B \to X_s \gamma) = (+0.44 \ ^{+0.24}_{-0.14}) \times 10^{-2}$$
$$A_{CP}(B \to X_d \gamma) = (-10.2 \ ^{+3.3}_{-5.8}) \times 10^{-2}$$

- However, the sum of  $b \rightarrow s\gamma$  and  $b \rightarrow d\gamma$  is predicted to be very small (close to zero, thanks to the unitarity of the CKM matrix).
- Further, difference of  $A_{CP}(B \rightarrow X_s \gamma)$  between charged and neutral B mesons  $\Delta A_{CP}$  is sensitive to phases in  $C_7$  and  $C_8$ .

○ In the SM , phases in C<sub>7</sub> and C<sub>8</sub> are zero  $\rightarrow \Delta A_{CP} = 0$ .

• If either is deviated from null, clear NP signal!

Theory refs:

T. Hurth, E. Lunghiand W. Porod, Nucl.Phys. B704 (2005) 56–74, M. Benzke et. al, PRL 106, 141801 (2011)

# $\overline{B} \rightarrow X_q \gamma$ : Rate Asymmetry

- In asymmetry (difference) measurements, most of systematic error cancels out, so both are still statistically dominated at Belle II with 50 ab<sup>-1</sup>.
- Uncertainty in  $A_{CP}$  to be  $\pm 0.61 \% \rightarrow 3.4\sigma$  if the central value not change



• Uncertainty in  $\Delta A_{CP}$  to be  $\pm 0.37 \% \rightarrow 13.5\sigma$  if the central value not change [from BaBar's measurement  $\Delta A_{CP}(X_s\gamma) = +(5.0 \pm 3.9 \pm 1.5)\%$ ] [Belle II : +(5.0 ± 0.37)%]

## Time dependent CPV

- Mixing-induced CP asymmetry in an exclusive  $b \rightarrow s\gamma$  CP eigenstate mode such as  $B \rightarrow K^*(K_s \pi^0)\gamma$  is an excellent probe for particular class of NP scenario.
- In the SM, expected asymmetry  $|S_{CP}| \approx \frac{2m_s}{m_h} \sin(2\phi_1) \sim a$  few %.



- New physics with right handed current increases the fraction of right handed photon.
  - Interfere with the SM occurs and large TDCPV possible
- Studies of these asymmetries are thus considered to be one of the most promising methods to search for non-SM right-handed currents

## Time dependent CPV

- At Belle II, significant improvement in the determination of  $A_{CP}(t)$  in  $K_s \pi^0 \gamma$  is expected.
  - $\rightarrow$  Belle II vertex detector is larger than Belle (6cm  $\rightarrow$  11.5cm).
  - ightarrow 30% more Ks with vertex hits available.
  - $\rightarrow$  Effective tagging efficiency is 13% better (conservative estimation).
- Expected errors for **S** measurements of  $K_s \pi^0 \gamma$  and  $\rho^0 \gamma$ .



# R(K), R(K\*), R(Xs)

#### Ratio of $B \rightarrow K\mu\mu$ and $B \rightarrow Kee$

•  $B \rightarrow KII$  proceeds via one loop diagram, and LU holds in SM.



nity.  $R(K) = 0.745^{+0.090}_{-0.074} \pm 0.036$ PRL 11, 151601 (2014)

 However electron mode is challenging at LHCb, especially for high q<sup>2</sup>.



- At Belle II:
  - electron and muon modes have similar efficiency.
  - Both low and high q<sup>2</sup> regions are possible.
  - All ratios R(K), R(K\*), R(X<sub>s</sub>) are possible.

# R(K), R(K\*), R(Xs)

The errors reach to 0.04 for all K, K\* and Xs modes in Belle II. Errors are still statistical dominant (systematic error  $\sim 0.4\%$ )



# Angular Analysis $B \rightarrow K^* \mid \downarrow \mid c$ (at Belle II)



#### Angular Analysis of $B o K^* \ell^+ \ell^-$

- Demonstrated that Belle can make a contribution to the  $b \rightarrow s \ell^+ \ell^-$  puzzle
- Found 2.6 $\sigma$  deviation from the Standard Model prediction
- Shows  $P'_5$  anomaly is unlikely to be a statistical fluctuation
- No significant lepton flavor non-universality is found

#### See Simon Wehle's talk in this conference

- Belle II and LHCb will be comparable for this process.
- electron mode more efficiently
- Belle II will be also be able to do isospin comparison (K\*<sup>0</sup>, K\*<sup>+</sup> or ground states K).

| q <sup>2</sup><br>(GeV <sup>2</sup> c <sup>-4</sup> ) | Belle | LHCb<br>(3 fb <sup>-1</sup> ) | Belle II |
|-------------------------------------------------------|-------|-------------------------------|----------|
| 0.1 - 4                                               | 0.416 | 0.109                         | 0.059    |
| 4 - 8                                                 | 0.277 | 0.099                         | 0.040    |
| 10.09 – 12                                            | 0.344 | 0.155                         | 0.049    |
| 14.18 – 19                                            | 0.248 | 0.092                         | 0.033    |

# $\mathsf{B} \longrightarrow \mathsf{X}_\mathsf{s} \mid^+ \mid^{\scriptscriptstyle -}$

 $\mathsf{A}_{\mathsf{FB}}$ 

- Inclusive measurement is theoretically cleaner than exclusive.
- Measurement of BF and  $A_{FB}$  in  $B \rightarrow X_s I^+ I^-$  at Belle.
- Sum-of-exclusive method is utilized.
- Tension in low q<sup>2</sup> region.
- Measurement can be improved at Belle II.



- Decay amplitude can be expressed in terms of C<sub>7</sub>, C<sub>9</sub>, and C<sub>10</sub>.
- Precise theory prediction available.

T. Huber, J. Virto, A. Ishikawa  $\rightarrow$ 







 SM predictions ([1] JHEP 02 184, 2015) updated BELLE2-MEMO-2016-007[2] [D M Straub]

| Mode                           | $\mathcal{B}$ [10 <sup>-6</sup> ] Ref. [2] | $\mathcal{B}$ [10 <sup>-6</sup> ] Ref. [1] |
|--------------------------------|--------------------------------------------|--------------------------------------------|
| $B^+ \to K^+ \nu \bar{\nu}$    | $3.98 \pm 0.43 \pm 0.19$                   | $4.68\pm0.64$                              |
| $B^0 	o K^0_{ m S}  u ar{ u}$  | $1.85 \pm 0.20 \pm 0.09$                   | $2.17\pm0.30$                              |
| $B^+ \to K^{*+} \nu \bar{\nu}$ | $9.91 \pm 0.93 \pm 0.54$                   | $10.22 \pm 1.19$                           |
| $B^0 \to K^{*0} \nu \bar{\nu}$ | $9.19 \pm 0.86 \pm 0.50$                   | $9.48 \pm 1.10$                            |

- NP scenario can be tested:
  - Non- standard Z-coupling
  - New sources of missing energy.



### $b \rightarrow s v \overline{v}$ : Belle II prospects

• Belle very recently updated b  $\rightarrow$  (s,d)  $v\overline{v}$  measurement.

(See P.Goldenzweig's talk in this conference)

- Brighter prospects for Belle II to observe this decay.
- Belle II extrapolation based on previous Belle measurement (hadronic tag)
   Phys.Rev.D87 111103 (2013) [BELLE2-MEMO-2016-008].
- Assumes 100% more had. tag eff. and 30% more K<sub>s</sub> reco. eff.



#### we are estimating the sensitivities

| Mode                                  | ${\cal B} [10^{-6}]$ | Efficiency  | $N_{\rm Backg.}$      | $N_{\rm Sig-exp.}$ | $N_{\rm Backg.}$    | $N_{\rm Sig-exp.}$ | Statistical          | Total |
|---------------------------------------|----------------------|-------------|-----------------------|--------------------|---------------------|--------------------|----------------------|-------|
|                                       |                      | Belle       | $711 \text{ fb}^{-1}$ | $711 fb^{-1}$      | $50 	ext{ ab}^{-1}$ | $50 ab^{-1}$       | error                | Error |
|                                       |                      | $[10^{-4}]$ | Belle                 | Belle              | Belle II            | Belle II           | $50 \text{ ab}^{-1}$ |       |
| $B^+ \to K^+ \nu \bar{\nu}$           | 4.68                 | 5.68        | 21                    | 3.5                | 2960                | 245                | 20%                  | 22%   |
| $B^0  ightarrow K^0_{ m S}  u ar{ u}$ | 2.17                 | 0.84        | 4                     | 0.24               | 560                 | 22                 | 94%                  | 94%   |
| $B^+ \to K^{*+} \nu \bar{\nu}$        | 10.22                | 1.47        | 7                     | 2.2                | 985                 | 158                | 21%                  | 22%   |
| $B^0 	o K^{*0}  u ar{ u}$             | 9.48                 | 1.44        | 5                     | 2.0                | 704                 | 143                | 20%                  | 22%   |
| $B \to K^* \nu \bar{\nu}$ combined    |                      |             |                       |                    |                     |                    | 15%                  | 17%   |

(We can include semileptonic tagging)

#### 1-Dec-16

#### CKM-2016 | WG-3 | S. Sandilya

### Summary and Status

- Major upgrade at KEK represents an essentially new experiment:
  - Many detector components and electronics replaced, software and analysis also improved.
- Belle II has a rich physics program, complementary to existing experiments and energy frontier programs.
- With the better detector Belle II and higher luminosity machine SuperKEKB, we can intensely search for NP with Radiative and EW Penguin decays.
- Accelerator commissioning : June 2016 (successful.) → Phase 2: Starts in Nov 2017 (w/o vtx) → Phase 3 / Run 1: Fall 2018 (full det.).
- Detector is now mostly installed (CDC rolled in successfully in mid oct.). Gearing up for Phase II.

### Summary and Status

- Major upgrade at KEK represents an essentially new experiment:
  - Many detector components and electronics replaced, software and analysis also improved.
- Belle II has a rich physics program, complementary to existing experiments and energy frontier programs.
- With the better detector Belle II and higher luminosity machine SuperKEKB, we can intensely search for NP with Radiative and EW Penguin decays.
- Accelerator commissioning : June 2016 (successful.) → Phase 2: Starts in Nov 2017 (w/o vtx) → Phase 3 / Run 1: Fall 2018 (full det.).
- Detector is now mostly installed (CDC rolled in successfully in mid oct.). Gearing up for Phase II.



## Double-radiative B decays

#### $\mathbf{B}_{\mathbf{q}} \rightarrow \gamma \gamma :$

#### SM prediction

 $\begin{array}{l} \mathsf{Br}(\mathsf{B}_{\mathsf{s}} \rightarrow \gamma \, \gamma)_{\mathsf{SM}} \in [0.5, \, 3.7] \times 10^{-6} \\ \mathsf{Br}(\mathsf{B}_{\mathsf{d}} \rightarrow \gamma \, \gamma)_{\mathsf{SM}} \in [1.0, \, 9.8] \times 10^{-8} \end{array}$ 

Bosch and Buchalla, JHEP 08 (2002) 054



Br(B<sub>d</sub> 
$$\rightarrow \gamma \gamma$$
)<sub>exp</sub> < 3.2 {6.2} × 10<sup>-7</sup>  
BaBar, PRD 83, 032006 (2011)  
{Belle, , PRD 73, 051107 (2006)}



- With the above comparison, Belle II will be able to discover  $B_d \rightarrow \gamma \gamma$  with the anticipated 50 ab<sup>-1</sup> at  $\Upsilon$ (4S).
- Furthermore, in an appropriately large data at  $\Upsilon(5S)$  B<sub>s</sub>  $\rightarrow \gamma \gamma$  can be observed.

#### $B \rightarrow X_s \gamma \gamma :$

•  $B \rightarrow X_s \gamma \gamma$  decays are suppressed by  $\alpha_s/4\pi$  compared to  $B \rightarrow X_s \gamma$ .

 $Br(B \to X_s \gamma \gamma)_{SM}^{c=0.02} = (1.7 \pm 0.7) \cdot 10^{-7}$ 

Asatrian et al., PRD 93, 014037 (2016) should be observable at Belle II.

- Measurements of the double-radiative decay mode would allow to put bounds on 1PI type corrections.
- One can study more complicated distributions like, double differential rate  $(d^2\Gamma/dE_1dE_2)$  and forward backward asymmetry  $\rightarrow$  sensitive to BSM physics.