Searches for Charged Lepton Flavor Violation in tau and hadron decays at Belle and Belle II **NuFact 2024** Lemont, Illinois, United States

Paolo Leo on behalf of the Belle and Belle II Collaboration

September 17, 2024

Observation of neutrino oscillations provided clear evidence that neutrinos are massive and **lepton flavour conservation** is violated.

What about the charged leptons?

- Charged LFV can occur through oscillations in loops
- The predicted rates are GIM suppressed $\propto (\frac{m_{\nu}}{M_W})^4$ $(10^{-54} \sim 10^{-49})$ for all the LFV μ and τ decays.

Observation of LFV will be a signature of NP! Many scenarios of physics beyond the Standard Model (SM) introduce new sources of CLFV $(10^{-10} \sim 10^{-7})$.

Baryon Number Violation (BNV), crucial ingredient to explain matter-antimatter asymmetry, allowed in many models.

These models also holds for $\boldsymbol{\tau}$ and hadron decays

$B(\tau)$ factories: Belle & Belle II

DESY

- Belle (1999 2010) and Belle II (2018) operate at B-factories.
 - Asymmetric e^+e^- colliders optimized for the production of **B** meson pairs, but also **D** mesons, τ leptons, ... dark sector
 - Collisions mainly at $\Upsilon(4S): \sqrt{s} = 10.58$ GeV (60 MeV below $\Upsilon(4S), \Upsilon(5S)$ and others)
- Advantages of experiments at B-factories
 - Well known initial-state condition and clean environment (low particle multiplicity)
 - Hermetic detectors with excellent particle identification (PID) and tracking performance

LFV at Belle and Belle II

Existing and expected limits on LFV τ decays [1]

Existing and expected limits on LFV B decays [2]

- Neutrinoless 2-body or 3-body decays to 52 final states.
- In some SM extensions, cLFV decays are expected at rates only one order of magnitude **below present bounds**.
- Final state involving τ makes harder the reconstruction due to the presence of missing energy.
- Hadronic B tag used to infer the momentum of the signal side

Belle II will improve limits by 1-2 orders.

τ LFV channels

Search for LFV $au ightarrow \mu \mu \mu$ decay @ Belle II

- Main analysis approach:
 - Inclusive of 3×1 and 3×3 topologies
 - Selection and background rejection using BDT
- Belle II with 424 fb⁻¹ arXiv:2405.07386
 - Extract signal yield from 2D plane $(M_{3\mu}, \Delta E_{3\mu})$:

$$M_{3\mu} = \sqrt{E_{3\mu}^2 - P_{3\mu}^2} \\ \Delta E_{3\mu} = E_{3\mu}^{CM} - E_{\text{beam}}^{CM}$$

- For signal:
 - $\Delta E_{3\mu}$ close to 0 and $M_{3\mu}$ close to au mass
 - Tails due to initial and final state radiation

DESY

Search for LFV $au ightarrow \mu \mu \mu$ decay @ Belle II

- Signal: efficiency: 20.4% (2.7 × Belle efficiency)
- Number of expected BG: 0.5
- 1 event observed inside the SR
- $\mathcal{B}(\tau \to 3\mu) < 1.9 \times 10^{-8}$ at 90% C.L.

Most stringent limit to date

	UL at 90% C.L. on $\mathcal{B}(\tau \to 3\mu)$
ATLAS	$3.8 \times 10^{-7} (\mathcal{L} = 20.3 \text{fb}^{-1})$
LHCb	$4.6 \times 10^{-8} (\mathcal{L} = 3.0 \text{fb}^{-1})$
CMS	$2.9 \times 10^{-8} (\mathcal{L} = 131 \text{fb}^{-1})$
Belle	$2.1 \times 10^{-8} (\mathcal{L} = 782 \text{fb}^{-1})$
BaBar	$3.3 \times 10^{-8} (\mathcal{L} = 486 \text{fb}^{-1})$
Belle II	$1.9 \times 10^{-8} (\mathcal{L} = 424 \mathrm{fb}^{-1})$

Search for $\tau \to l V^0 (V^0 = \rho, \omega, \phi, K^*)$ decays @ Belle

Previous search at Belle on 854 fb⁻¹ exploiting 1-prong tag [1] New results from Belle [2]:

- Increase the efficiency using
 - full data set of 980 fb⁻¹ [2]
 - more decay modes in the tag side
 - background suppression with BDT

- Exploit topology and event/tag kinematics of the backgrounds
- $\bullet~{\rm Further~suppress}~\tau\to 3\pi\nu$ and $ee\to q\bar{q}$ with ${\rm BDT}$
- Estimate expected background in SR from sideband interpolation

[1] Y. Miyazaki, et. al., (Belle Collaboration) Phys. Lett. B 699, 251 (2011)

[2] N. Tsuzuki, et. al., (Belle Collaboration) JHEP 2023, 118, (2023)

Search for $\tau \rightarrow lV^0$ decays @ Belle

- $\bullet~$ No significant excess in all modes $\rightarrow~$ set ULs at 90% C.L.
- 30% improvement over previous measurements:
 - increased statistics (124 fb¹)
 - higher signal efficiency (9%)

Mode	ε (%)	$N_{ m BG}$	$\sigma_{ m syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}_{\rm obs}~(\times 10^{-8})$
$\tau^\pm \to \mu^\pm \rho^0$	7.78	0.95 ± 0.20 (stat.) ± 0.15 (syst.)	4.6	0	< 1.7
$\tau^\pm \to e^\pm \rho^0$	8.49	$0.80 \pm 0.27 (stat.) \pm 0.04 (syst.)$	4.4	1	< 2.2
$\tau^\pm \to \mu^\pm \phi$	5.59	$0.47 \pm 0.15 (stat.) \pm 0.05 (syst.)$	4.8	0	< 2.3
$\tau^\pm \to e^\pm \phi$	6.45	0.38 ± 0.21 (stat.) ± 0.00 (syst.)	4.5	0	< 2.0
$\tau^\pm \to \mu^\pm \omega$	3.27	0.32 ± 0.23 (stat.) ± 0.19 (syst.)	4.8	0	< 3.9
$\tau^\pm \to e^\pm \omega$	5.41	0.74 ± 0.43 (stat.) ± 0.06 (syst.)	4.5	0	< 2.4
$\tau^\pm \to \mu^\pm K^{*0}$	4.52	$0.84 \pm 0.25 (stat.) \pm 0.31 (syst.)$	4.3	0	< 2.9
$\tau^\pm \to e^\pm K^{*0}$	6.94	$0.54 \pm 0.21 (stat.) \pm 0.16 (syst.)$	4.1	0	< 1.9
$\tau^{\pm} ightarrow \mu^{\pm} \overline{K}^{*0}$	4.58	$0.58 \pm 0.17 (stat.) \pm 0.12 (syst.)$	4.3	1	< 4.3
$\tau^{\pm} \to e^{\pm} \overline{K}{}^{*0}$	7.45	0.25 ± 0.11 (stat.) ± 0.02 (syst.)	4.1	0	< 1.7

• Belle II: <u>arXiv:2407.05117</u>

- Reconstruct exactly 4 charged tracks (total null charge) in one-prong tag approach
- $\Lambda(\bar{\Lambda})$ is reconstructed from proton (anti-proton) and pion
- Signal selection and background suppression using loose pre-selection, followed by Gradient-BDT
 - The flight significance (L/σ) of Λ and $\bar{\Lambda}$ candidates is one of the most discriminanting variables.

Search for BNV decay $\tau \to \Lambda(\bar{\Lambda})\pi$ @ Belle II

- DESY
- Signal efficiencies are 9.5% and 9.9% for $\tau \to \Lambda \pi$ and $\tau \to \bar{\Lambda} \pi$ respectively
- Poisson counting experiment technique in signal region in the $M(\Lambda \pi) = \sqrt{E_{\Lambda \pi}^2 P_{\Lambda \pi}^2}$ and $\Delta E = E_{\Lambda \pi}^{CM} \sqrt{s}/2$ plane
- Expected events are 1 and 0.5 for $\tau \to \Lambda \pi$ and $\tau \to \bar{\Lambda} \pi$ respectively
- No events observed
- World's best upper limits at 90% C.L. of 4.7×10^{-8} for $\mathcal{B}(\tau \to \Lambda \pi)$ and 4.3×10^{-8} for $\mathcal{B}(\tau \to \bar{\Lambda} \pi)$

Hadron LFV channels

- Motivation: BNV is one of the crucial ingredients to explain matter-antimatter asymmetry
 - In many models, BNV and LNV but their difference $\Delta(B-L)=0$ is conserved
 - Valuable input to the search of leptoquarks

- Belle performed a search for $D^0 \rightarrow pl^-$, $\bar{D}^0 \rightarrow pl^-$, $D^0 \rightarrow \bar{p}l^+$ and $\bar{D}^0 \rightarrow \bar{p}l^+$ $(l = e \text{ or } \mu)$ PhysRevD.109.L031101
 - 921 fb $^{-1}$ integrated data luminosity at and 60 MeV below the $\Upsilon(4S)$ and at the $\Upsilon(5S)$ resonance
 - The well-known $D^0\to K^-\pi^+$ is used for normalization to measure the branching fractions of signal modes.

Search for LNV and BNV decays $D \rightarrow pl$ @ Belle

- Signal yields are extracted with extended maximum likelihood fits to the unbinned M_{D^0} and ΔM distributions of each decay mode
- Separate PDFs are used for signal, peaking and combinatorial background
 - Signal: sum of 4 gaussian for ΔM , 2 Gaussian + 1 asymmetric Gaussian for M_{D^0}
 - peaking background, combinatorial background and the sum of the fits are shown in the plots.

Decay mode	e (%)	N_S	$\mathcal{S}\left(\sigma\right)$	N_{pl}^{UL}	$\mathcal{B} imes 10^{-7}$
$D^0 \rightarrow pe^-$	10.2	-6.4 ± 8.5		17.5	< 5.5
$\bar{D}^0 \rightarrow pe^-$	10.2	-18.4 ± 23.0		22.0	< 6.9
$D^0 ightarrow ar{p} e^+$	09.7	-4.7 ± 23.0		22.0	< 7.2
$\bar{D}^0 ightarrow \bar{p} e^+$	09.6	7.1 ± 9.0	0.6	23.0	< 7.6
$D^0 \rightarrow p \mu^-$	10.7	11.0 ± 23.0	0.9	17.1	< 5.1
$\bar{D}^0 \rightarrow p \mu^-$	10.7	-10.8 ± 27.0		21.8	< 6.5
$D^0 o ar{p} \mu^+$	10.5	-4.5 ± 14.0		21.1	< 6.3
$\bar{D}^0 \to \bar{p} \mu^+$	10.4	16.7 ± 8.8	1.6	21.4	< 6.5

- Most stringent upper limits to date
- First results for $D \to p\mu$

Belle: using 121 fb⁻¹ collected at the $\Upsilon(5S)$ resonance mass. JHEP08(2023)178

- To suppress $J/\psi \rightarrow l^+l^-$ background, $M_{l_1,l_2} \notin [3.01, 3.12]$ for electron and $M_{l_1,l_2} \notin [3.05, 3.12]$ for muon case
- To reduce **combinatorial background**, ensure l_1 and l_3 have the same charge

• FastBDT to remove
$$e^+e^- \rightarrow q\bar{q}$$
 and $e^+e^- \rightarrow B^{(*)0}_s \bar{B}^{(*)0}_s, B^{(*)}\bar{B}^{(*)}X$

	$\epsilon~(\%)$	$N_{ m bkg}^{ m exp}$	$N_{\rm obs}$	${\mathcal B}$
				$(\times 10^{-4})$
$B_s \to e^- \tau^+$	0.031 ± 0.007	0.68 ± 0.69	3	< 14
$B_s \to \mu^- \tau^+$	0.030 ± 0.007	0.77 ± 0.78	1	< 7.3

- Most stringent limit on ${\cal B}(B^0_s o \mu au) < 3.4 imes 10^{-5}$ reported by LHCb [1]
- $\bullet\,$ First such limit reported on the $B^0_s \to e \tau$
- Belle II could improve in the future
 - More data collected at the $\Upsilon(5S)$ resonance.
 - Enhanced analysis techniques such as full reconstruction of the tag B_s^0

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 123, 211801 (2019).

16/21

- Motivation: From the $\mathcal{B}(B^+ \to K^+ \nu \nu)$ excess [1] (2.7 σ larger than SM) the predicted $\mathcal{B}(B \to K \tau \mu)$ is quite close to the current experimental sensitivities ([2,3] × 10⁻⁶).
- Belle and Belle II: Search for LFV in $B^0 \to K_S^0 \tau l$ $(l = \mu, e)$ from a combined analysis of Belle (711 fb⁻¹) and Belle II (364 fb⁻¹) dataset.
 - B_{tag} is fully reconstructed and kinematically constrained

$$\begin{split} M_{bc} \equiv \sqrt{E_{beam}^2/c^4 - |\vec{p}_{B_{tag}}|^2/c^2} > 5.27 ~ \mathrm{GeV}/c^2 \\ -0.15 < \Delta E < 0.1 \mathrm{GeV} \end{split}$$

- Full Event Interpretation (FEI) algorithm score is used to select the best candidate
- τ lepton kinematics is obtained from kinematic constraints and the signal yields are extracted from τ mass (M_{τ}) as signal event peaks

[1] I. Adachi et al. (Belle II Collaboration), Phys. Rev. D 109, 112006 (2024).

Search for LFV $B^0 \rightarrow K^0_S \tau l$ @ Belle and Belle II

- BDT is used to remove charm meson semileptonic decays background.
- PDFs (Johnson's S_U function) are used to model M_{τ}

			$\mathcal{B}(10^{-5})$	
Channels	$\epsilon(10^{-4})$	$N_{ m sig}$	Central value	UL
$B^0 \to K^0_S \tau^+ \mu^-$	1.7	-1.8 ± 3.0	$-1.0 \pm 1.6 \pm 0.2$	1.1
$B^0 \to K^0_S \tau^- \mu^+$	2.1	2.6 ± 3.5	$1.1\pm1.6\pm0.3$	3.6
$B^0 \to K^0_S \tau^+ e^-$	2.0	-1.2 ± 2.4	$-0.5\pm1.1\pm0.1$	1.5
$B^0 \to K^0_S \tau^- e^+$	2.1	-2.9 ± 2.0	$-1.2\pm0.9\pm0.3$	0.8

These results are among the most stringent limits achieved of $b \rightarrow s\tau l$ transition to date.

- DESY
- **Motivation:** Experimental limit on the two-body CLFV quarkonium decay provides complementary constraints on the Wilson coefficients of the effective Lagrangian of new physics models
- Belle with 25 fb⁻¹:JHEP02(2024)187
 - Signal signature: high-momentum lepton l₁
 - The au lepton decays to $l_2 \nu_2 \nu_{ au}$ or $\pi^+ \pi^0 \nu_{ au}$
 - The l_2 is required to have different flavour respect to the non- τ lepton (l_1) coming from the Υ decay (to remove copious Bhabha background).
 - MVA (FastBDT) performed to further suppress the background (BhaBha)

- Signal efficiencies are 12.3% (8.1%) for $\Upsilon(2S) \to \mu \tau$ ($\Upsilon(2S) \to e \tau$)
- Expected events are 3.9 ± 1.8 (5.9 ± 2.6) for $\Upsilon(2S) \rightarrow \mu \tau$ ($\Upsilon(2S) \rightarrow e \tau$)
- Observed events are 3 (12) for $\Upsilon(2S) \to \mu \tau$ ($\Upsilon(2S) \to e \tau$)
- Upper limits at 90% C.L. of

$$\mathcal{B}(\Upsilon(2S) \to \mu\tau) < 0.23 \times 10^{-6}$$
$$\mathcal{B}(\Upsilon(2S) \to e\tau) < 1.12 \times 10^{-6}$$

- Belle obtained 14 (3) times better upper limits for $\Upsilon(2S) \to \mu \tau$ ($\Upsilon(2S) \to e \tau$) as compared to previous results from BaBar [1].
- [1] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 104, 151802 (2010).

- Some of them are world leading results: $\tau \to \mu \mu \mu$, $\tau \to l V^0$, $\tau \to \Lambda \pi$, $D \to pl$, $B^0 \to \tau e$, $\Upsilon(2S) \to l \tau$, and others...
- Within the next years of data taking Belle II will collect more data with expectations of significant improvements in current limits, spanning from a few parts in 10^{-10} to 10^{-9}

BACKUP SLIDES

τ LFV channels

• Search for various decay models:

- $\tau \to lll$ • $\tau \to lK_{S}^{0}$, $\Lambda \pi$
- $\tau \to l K_S, K \pi$ • $\tau \to l V^0 (\to h h')$
- $\tau \to l P^0 (\to \gamma \gamma)$
- $\tau \rightarrow lhh'$
- $\bullet \ \tau \to l \gamma$

- Motivation: the decay channels forbidden in the SM but allowed in several new physics scenarios
 - LFV decay $\tau \to l V^0$
 - The $\tau \to \mu \phi$ mode is a sensitive probe for leptoquark models
 - BNV decay $\tau \to \Lambda(\bar{\Lambda})\pi$
 - BNV is one of the necessary conditions to explain the asymmetry of matter
 - Beyond SM scenarios allow for BNV and LNV
 - LFV decay $\tau \rightarrow \mu \mu \mu$ (Golden Channel)

Physics Models	$\mathcal{B}(\tau \to \mu \mu \mu)$
SM	$10^{-53} \sim 10^{-55}$
SM + seesaw	10 ⁻¹⁰
SUSY + Higgs	10 ⁻⁸
SUSY + SO(10)	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁸

23/21

- We present results for these other ٠ decay models:
 - $D \rightarrow pl$
 - $B_s^0 \to \tau l$ $B^0 \to K_s^0 \tau l$
 - $\Upsilon(2S) \to l\tau$

- The decay channels are fobidden in the SM but allowed in many BSM theories.
- Some of them are searching also for BNV, and are optimal for leptoquarks searches.
- Final states involving τ generally require special techniques due to the presence of missing energy (neutrinos) and lack of a distinctive signature
 - Belle II offers improved software/tools (B-tagging with FEI)

Search for LFV decay $\tau \rightarrow l\phi$ @ Belle II

- Untagged inclusive reconstruction, reconstruct signal side as phi meson + lepton candidate, assign everything else (neutral clusters, tracks) to the rest of event (ROE):
 - higher signal efficiency ($\sim 16\%$ improvement), more background
 - backgrounds reduced with pre selections and a BDT trained against $q\bar{q}$ events

arXiv:2305.04759

Experiment	Lum (fb ⁻¹)	$\mathcal{B}^{90}_{UL}(e\phi) \ (\times 10^{-8})$ exp. / obs.	$\mathcal{B}^{90}_{UL}(\mu\phi) (\times 10^{-8})$ exp. / obs.
BaBar [1]	451	5.0 / 3.1	8.2 / 19
Belle	854	4.3 / 3.1	4.9 / 8.4
Belle II	190	15 / 23	9.9 / 9.7

- Results not competitive yet (Small data set)
- First, successfully untagged strategy approach for tau physics at Belle II
- exploited for other measurements

[1] B. Aubert, et. al., (BaBar Collaboration) Phys. Rev. Lett. 103, 021801 (2009)

Paolo Leo