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Abstract

Particle identification is a central experimental chal-
lenge in the precise measurement of Standard Model
parameters and in the search for new physics beyond
the standard model at the Belle II experiment. This
also includes an accurate knowledge of the imperfections
in particle identification efficiencies. This efficiency is
typically determined from Monte Carlo simulations, but
crosschecking and validating these simulations, requires
to determine efficiencies directly from the real data.

In this thesis, we present the determination of muon
identification efficiencies using J/Ψ → µ+µ− decays. To
remove background events, that remain after event se-
lection, we do a background subtraction using the sPlot
method. In the existing implementation of the efficiency
calculation, we observe in simulated J/Ψ → µ+µ− de-
cays, that the efficiencies computed using background
subtraction disagree with the Monte Carlo truth effi-
ciencies in the momentum range below 1.5 GeV/c. The

sPlot method can be impaired by correlations between
the kinematic variables of the sample. Therefore, we
investigate the effect of correlations to understand and
mitigate a possible bias introduced by them to the deter-
mination of particle identification efficiencies.

We find out, that it is possible to improve the effi-
ciency estimates by taking into account correlations be-
tween kinematic variables in the background subtrac-
tion. However, these improvements alone are not suffi-
cient to reach agreement with the true efficiencies in the
full momentum range. A possible explanation for the re-
maining discrepancies are observed imperfections of the
parametrization of the probability density function used
to model the invariant mass distribution of the two par-
ticle system, which is needed for the sPlot method.
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1 Introduction

The Belle II experiment is at the forefront of high precision tests of the Standard
Model of particle physics and the search for new physics beyond the Standard
Model [1]. The key to that search is knowing the species of a particle, which
determines how that particle can interact, and allows us to reconstruct the pro-
cesses and decays, that have occurred in the experiment. For that we need
particle identification (PID), which means assigning the species of a particle to
a track measured in the detector.

However the particle identification of a detector is not always perfect, which
can lead to errors in the experimental results. These imperfections need to be
accounted for in corrections. Therefore it is also very important to test the per-
formance of PID. This is quantified by the particle identification efficiency, which
can be tested for each species. The efficiency is the number of particles correctly
identified as belonging to a given species, divided by the total number of particles
of that species tested [2]. The efficiency depends on the kinematics of a particle,
so for example its momentum [1]. These PID efficiencies can either be obtained
directly from experimental data or from so called Monte Carlo simulations of
the physics process in the experiment and of the detector. However, the Monte
Carlo simulations may not perfectly resemble the real physics processes of the
experiment. Therefore we need to crosscheck and correct the efficiency results
obtained from simulations with those obtained from real data. This also yields
valuable information, that can be used to better understand the underlying pro-
cesses and improve simulations.

To obtain PID efficiencies directly from real data, we need to employ analysis
methods on a known decay process. In this analysis we will study the muon
identification efficiency of Belle II. To obtain efficiencies from real data, we are
first required to obtain a pure sample, that only consists of muons.

We need to do this on a decay, where the species of the decay daughter par-
ticles are known. For this study we use the decay mode J/Ψ → µ+µ−. However,
since the J/Ψ can also decay into pairs of particles, that are not muons, we need
to use the tag and probe approach. Identifying the species of one of the daugh-
ter particles, which is called the tag particle, implies the species of the other so
called probe particle. This means we can first use PID to identify the tag parti-
cle and, given that both particles come from a J/Ψ decay, we can use the probe
particle to determine the muon identification efficiency. However, since not all
events, where one particle is identified as a muon stem from a J/Ψ decay, we
also need to do background subtraction. For this we use the sP lot method [3].
This method uses the known distribution functions of signal and background in
one so called discrimination variable to assign weights to each event. These are
called sWeights [4]. As discrimination variable for the sP lot method we use the
invariant mass mµµ of the two particle system, in which the distribution of signal
and background is very distinctive. The sWeights can be used to reconstruct
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histograms of only signal events in kinematic variables, that are uncorrelated
with the discrimination variable mµµ. From these histograms we can then finally
compute the PID efficiencies in kinematic variable bins.

This approach is already implemented in the current analysis framework,
which is called the systematic corrections framework [3, 5]. To develop and test
the analysis methods, we can again use the Monte Carlo simulation, where the
true efficiencies are known. In the muon identification efficiencies computed us-
ing the systematic corrections framework, we observe a mismatch between the
efficiencies, which are computed using the sP lot method, and the efficiencies
computed using Monte Carlo truth information. In particular in the momentum
range below 1.5 GeV/c the two efficiencies do not agree. Here the muon identi-
fication efficiencies computed using sP lot background subtraction are wrong for
the simulation and probably also for real data.

In this thesis, we will study the sP lot method for background subtraction for
the J/Ψ → µ+µ− sample. We will try to find the reasons for the muon iden-
tification efficiencies using the sP lot background subtraction method. We will
investigate correlations between the event distributions in kinematic variables of
the two muons to understand their effect on the sWeight background subtraction
and efficiency calculation. In the end, we want to understand and mitigate the
mismatch between Monte Carlo and sWeight efficiencies, to be able to obtain
valid PID efficiencies directly from data.

In section 2, we will briefly introduce the Standard Model and the particles
relevant to understand PID at Belle II, as well as introduce some concepts of
collider experiments. In section 3, an introduction into the Belle II experiment
will be given. The methods used in this analysis, including the sP lot method, will
be discussed in section 4. In section 5, the data set, that was used for the analysis,
will be introduced and initial cuts as well as the probability density function
model will be explained. We will discuss the results of different approaches
to achieve better agreement of the muon identification efficiencies in section 6.
Finally, we will come to a conclusion and outlook in section 7.
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2 Standard Model and Concepts of Collider Ex-

periments

In this section, general terms and concepts necessary for understanding the fol-
lowing sections will be introduced. Therefore the Standard Model will be briefly
introduced, to give a definition for the necessary particles and to understand
why we need particle identification. After that some concepts of particle collider
experiments will be introduced.

2.1 Standard Model

The Standard Model is our best theory to describe the phenomena of three
out of the four known fundamental forces, being the electromagnetic, weak and
strong force. It lays a theoretical framework for the processes observed in parti-
cle physics experiments. It has made multiple predictions that were later proved
true, some of the most prominent being the existence of the top quark and the
Higgs boson [6].

The Standard Model is a quantum field theory. It describes physics using
fields, whose excitations are quantized and occur as particles. These fundamen-
tal quantum fields, the Standard Model deals with, can either be scalar fields or
spinor fields. The excitation of a spinor fields resembles a fermion, a particle with
a half integer spin. These are the particles most of the matter we know is made
up of. Each of those particles has a corresponding anti particle with opposite
charge. The excitation of a scalar fields resembles a boson, a particle with an inte-
ger spin [6, 7]. The bosons act as exchange particles of the forces of the standard
model. The eight gluons are the exchange particles of the strong interaction, the
weak interaction is carried by the W± and Z0 and for the electromagnetic inter-
action the exchange particle is the photon γ. The coupling between an exchange
boson and a type of fermion decides, if that fermion takes part in the respective
force conveyed by the boson. This offers a way to group the fermions of the stan-
dard model. A common distinction is that between quarks and leptons. Those
fermions that couple with gluons, i.e. interact via the strong interaction, are
called quarks. Those fermions that do not couple to gluons are called leptons.
The Standard Model includes three generations of both quarks and leptons [6, 8].

An important aspect of a theory is its behavior under discrete symmetry. For
that it is considered, how the physics of a theory changes, if a symmetry operation
is applied. For the Standard Model there are three discrete symmetry operations
whose effect can be investigated. The charge conjugation C replaces particles
with their antiparticles. The parity P flips the sign of all spacial coordinates,
whereas the time reversal symmetry T flips the sign of the time coordinate. Also
combinations of these symmetry operations like CP can be considered. If the
physics changes under a symmetry operation, this is called a violation of the
symmetry. Measuring, if a symmetry holds or how much it is violated grants
valuable insights to better understand the processes of nature [6].
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2.1.1 Leptons

For each of the three generations of leptons there exist two types of particles,
which are referred to as being from the same lepton family. These are the elec-
tromagnetically charged lepton which carries an electromagnetic charge Q = −e
and the charge less neutrino with Q = 0. The leptons are called electron e and
electron neutrino νe for the first generation, muon µ and muon neutrino νµ for the
second generation and tau τ and tau neutrino ντ for the third generation [6, 8].
The charges as well as the currently known masses in the Standard Model of all
these leptons are listed in table 1.

Table 1: List of leptons including the current world average for their mass m [9]
as well as their quantum numbers in the Standard Model.

Lepton m [MeV/c2] Q [e]
νe 0 0
e 0.51099895000± 0.00000000015 -1
νµ 0 0
µ 105.6583755± 0.0000023 -1
ντ 0 0
τ 1776.93± 0.09 -1

On interaction with a W± boson a left handed charged lepton turns into its
corresponding neutrino and vice versa. No transitions between a charged lepton
and a neutrino of a different family have yet been observed. These transitions
are therefore not included in the Standard Model. This is known as the lepton
family number conservation [8].

2.1.2 Quarks

There exist two differently charged quarks for each generation. Up type quarks
carry an electromagnetic charge of +2/3 e while down type quarks have an elec-
tromagnetic charge of -1/3 e. The six resulting quarks are called up (u) and down
(d) for the first generation, charm (c) and strange (s) for the second generation
and top (t) and bottom (b) for the third generation [6, 8].

The defining property of quarks is that they carry a color charge and therefore
interact via the strong interaction. There exist three colors and three anti colors.
Each quark can have each color and each antiquark each anticolor. The potential
of the strong interaction and thus the energy needed to separate two quarks rises
approximately linearly with the distance. This so called confinement results in
very high energies necessary to separate two quarks bound by the strong inter-
action. This is the reason why quarks never appear in a state that externally
carries a color charge, but always in neutral colored bound states [8].
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2.1.3 Hadrons

In general the bound states of quarks via the strong interaction are called hadrons.
The strong interaction bound state of a quark that carries a color and an anti
quark that carries the corresponding anti color is called a meson. Some im-
portant mesons for this analysis are listed in table 2. The neutral kaon, which
consists of a down and a strange quark, appears in states that are mixed from
the pure quark states ds and sd. The two mixed states have different lifetimes
and are therefore called KS for the short living kaon and KL for the long living
one. Furthermore mesons have a ground state and can be exited. This is denoted
similar to the hydrogen atom with the quantum numbers of the state [6, 8].

Table 2: List of important mesons including their quark content and the current
world average for their mass m [9].

Meson name Symbol Quark content Q [e] m [MeV/c2]

Charged Pion
π+

π−
ud
du

1
-1

139.57039 ±0.00018

Neutral Pion π0 uu+dd√
2

0 134.9768 ±0.0005

Charged Kaon
K+

K−
us
su

1
-1

493.677± 0.016

Neutral Kaon
KS

KL

ds−sd√
2

ds+sd√
2

0 497.611± 0.013

J/Ψ - Meson J/Ψ cc 0 3096.900 ±0.006

Charged B-meson
B+

B−
ub
bu

1
-1

5279.41± 0.07

Neutral B-meson
B0

B
0

db−bd√
2

db+bd√
2

0 5279.72± 0.08

Υ(4S) - Meson Υ(4S) bb 0 10579.4± 1.2

Another kind of strong interaction quark bound state is the baryon, which is a
particle that has an odd number of valence quarks. The most well known baryons
are the proton p with uud valence quarks and the neutron n with udd valence
quarks [8]. Another important particle that can occur in particle collisions in the
Belle II experiment is the deuteron, which is the bound state of a proton and a
neutron. In table 3 their masses are listed.

Table 3: List of some baryons as well as the deuteron with the current world
average of their masses m [9].

Name Symbol m
Proton p 938.27208816± 0.00000029 MeV/c2

Neutron n 939.5654205± 0.0000005 MeV/c2

Deuteron d 1875.61294500± 0.00000058 MeV/c2
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2.2 Basic Concepts in Particle Collider Experiments

Most of today’s leading particle physics experiments are particle colliders. In
this section some common terminology of particle colliders will be introduced.

Luminosity

To characterize the performance of a particle accelerator, a useful quantity is
the luminosity L. It is a measure for the number of collision events per time.
Together with the cross section σ, which is a measure for the probability that a
given process may take place, it can be used to calculate the transition rate dR

dt
[2]:

dR

dt
= L · σ. (1)

To quantify the overall data a collider is able to produce, we can also define
the integrated luminosity Lint, by integrating over the luminosity over time [2]:

Lint =

∫
L(t)dt. (2)

Invariant Mass

The center of mass energy or invariant mass Ecm is the energy a system of
particles has in its rest frame. It can be calculated by contracting the sum of the
four-momenta pµi of each particle i with itself. Using Einsteins sum convention
this can be written as [6]:

E2
cm =

(∑
i

pµi

)(∑
i

piµ

)
. (3)

Since the invariant mass is a Lorentz scalar, it is invariant under Lorentz
transformations. This implies, that it can be calculated using equation 3 with
the four-momenta in any system. It is especially useful to check if a given set
of particles comes from the decay of a single particle. This is possible since the
only quantity needed to calculate the invariant mass, the total four momentum,
is conserved and therefore the invariant mass itself is conserved. Therefore the
center of mass energy of the system of particles has to be identical to the mass of
the decaying particle. Actually, because of the uncertainty principle, it is possi-
ble for the invariant mass of the particle system to deviate from the exact mass
of the decaying particle because of its limited lifetime. The same principle also
applies for particles colliding. The produced particle, for which the production
cross section at a given invariant mass is maximal, is called a resonance [6].

Particle Identification

Particle identification is the assignment of a hypothesis for a particle species to
a measured track. The particle is a real physical object whereas the species in
this context is its type [2]. For collider experiments it is often assumed, that
only a certain set of species with long enough lifetimes can actually appear in
the detector. For charged particles at the Belle II experiment these species are
electrons, muons, pions, kaons, protons and deuterons [1].
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3 Belle II Experiment

The Belle II experiment is located at the High Energy Accelerator Research Or-
ganization (japanese: kō-eneruḡı kasokuki kenkyū kikō) KEK in Tsukuba, Japan.
It is a leading experiment of the high precision frontier of particle physics. That
means it aims to accurately measure the quantities of the Standard Model and
search for new physics in processes deviating from the Standard Model and for-
bidden decay processes, in contrast to experiments at the Large Hadron Collider
(LHC) at Cern searching for new particles at high energies. The Belle II experi-
ment has been taking data since 2018 and will be up for service for some years to
come. This means the experiment is still producing data and is being optimized.

Belle II is designed to generate a large data set of B-mesons. These are
produced from the collision of electrons and positrons at the resonance energy
of the Υ(4S) resonance [1]. Its energy is sufficient to decay into a state of two
neutral or charged B-mesons with a branching fraction of over 96% [9]. The
same production mechanism was already used in previous similar experiments,
namely Babar at the Stanford Linear Accelerator Center SLAC and Belle IIs
direct predecessor Belle. Such experiments producing lots of B-mesons are called
B-factories [10].

3.1 Goals of the Belle II Experiment

The Belle II experiment as a B-factory is set to produce a large number of B-
mesons. It aims to precisely measure the size of CP violation in the BB system
and its decay. This is especially important to better understand the matter anti-
matter asymmetry of nature. Any deviations from the Standard Model found in
precision measurements of CP violating decays could be a hint of new physics.

Another main product of e+e− collisions at Ecm = 10.58GeV is the produc-
tion of µ+µ− and τ+τ− pairs. The cross section for these processes is about the
same size as that for the Υ(4S) production. The high number of τ pairs to be
produced allows Belle II to contribute a lot to our understanding of τ physics.
Particularly it is being searched for lepton family number violation in the decay
of τ leptons in processes, like τ± → µ±γ and τ± → µ± + µ+µ−. These decay
modes are forbidden in the Standard Model but appear in extensions like many
neutrino mass mechanisms. For this search particle identification in the lepton
sector is especially important to differentiate these exclusively leptonic decays
from allowed decays in the Standard Model [1, 10].

Belle II is also searching for potential dark sector physics, for which it has
the right prerequisites, namely its precisely known total center of mass energy,
Lorentz boost and the large amount of data at hand. Therefore it is feasible to
search for missing energy in Standard Model processes. These may be caused by
production of dark matter particles, that we can not observe in the detector [1].
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3.2 SuperKEKB Accelerator Facility

The high energy e+e− beams at Belle II are provided by the SuperKEKB accel-
erator facility, which was upgraded from its predecessor KEKB used for Belle.
SuperKEKB aims to achieve 40 times the luminosity of its KEKB. This is mainly
done by decreasing the beam size at the collision point by a factor of 20. The
target luminosity will be 8× 1035 1

cm·s [1].

Figure 1: Structure of the SuperKEKB accelerator complex [11].

Since SuperKEKB collides electrons and positrons, two separate storage rings
are needed. The structure of the accelerator complex is shown in figure 1. The
collider mainly operates at the center of mass energy of 10.58 GeV corresponding
to the Υ(4S) resonance. The center of mass system is Lorentz boosted to the
lab system, so that the decay products travel some measurable distance in the
lab system before decaying. This makes it possible to gather precise information
about the B-meson lifetime and CP violation. To achieve the boosted system,
the beam energies are asymmetric with the high energy electron beam having an
energy of 7 GeV and the low energy positron beam chosen to be 4 GeV [1].

3.3 Detectors

The Belle II detector was upgraded from Belle significantly, to be able to handle
the higher background levels caused by the increased luminosity. The detector
is in general barrel shaped around the beam axis. The top and bottom of the
barrel are called end caps. The structure of the experiment is shown in figure
2. The coordinate system of Belle II has its origin in the collision point. The z
axis is parallel to the bisector of the two beams. Its positive direction is in the
flying direction of the high energy beam. From the z axis the polar angle θ can
be defined with θ = 0 being along the z axis [12].

The collision takes place in a homogeneous magnetic field of around 1.5T
at the center in z axis direction. The field is produced by a superconducting
solenoid magnet and an iron yoke. This causes all charged particles to fly on
curved trajectories dependant on their charge and momentum. The detector is
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Figure 2: Structure of the Belle II detector [13].

build in such a way that a particles track can be reconstructed, its energy, mo-
mentum and velocity determined and thus a species of particle assigned. For
that Belle II makes use of several sub detectors, each specialized for some of
those tasks. The sub detectors are mounted in layers around the collision point
along the barrel and end caps. In the following sub sections the sub detectors
will be described in detail.

3.3.1 Tracking and Ionization Detectors

A very important task in the Belle II experiment is the reconstruction of particle
tracks. This is done using three subdetectors: the silicon pixel detector PXD,
silicon vertex detector SVD and the central drift chamber CDC. The PXD and
SVD are often grouped together as the vertex detector VXD. All of those detec-
tors make use of the ionization caused by a charged particle passing [1].

When a charged particle passes through matter, it ionizes the atoms and
loses energy. This ionization causes an avalanche of electrons that conduct an
electric current in an applied electric field in the detectors. This causes a signal
in readout wires, that is used to reconstruct the particles track [14]. Since the
charge of all long living charged particles expected to be observed is ±e, the par-
ticle momentum can be inferred from the curvature of its track in the magnetic
field [1].
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Additionally, from the ionization the energy loss per unit length dE/dx of the
particle can be measured [15]. The energy loss is governed by the Bethe-Bloch
formula and depends on the particle’s velocity. Therefore at the same parti-
cle momentum, particles of different masses will have different energy losses [8].
This allows to calculate a likelihood for different particle species hypothesis. For
values of βγ in a range of 1 to 10, the Bethe-Bloch curve reaches a flat mini-
mum [14]. This makes it harder to separate between particle species since for
two different species of particles with same momentum and thus different speed
the energy loss is nearly the same [14, 15]. The expected dE/dx in the CDC for
several particle species of different momenta is shown in figure 3.

Figure 3: dE/dx in the CDC for electrons (blue), muons (turquoise), pions
(black), kaons (red) and protons (yellow) as a scatter plot of the particle mo-
mentum [16].

Vertex Detector VXD

The Vertex detector VXD is the innermost detector of Belle II. It consists of the
silicon pixel detector PXD and the silicon vertex detector SVD, both located in
cylindrical layers around the beam lines and collision point. In forward direction
of the experiment the detector wedges in for greater angle coverage. Overall the
range of the covered polar angle of both detector types is 17◦ to 150◦ in the lab
frame. The PXD consists of so called DEPFET type sensors arranged in two
layers at radii of 14mm and 22mm. The SVD consists of double-sided silicon
strip sensors in layers at 9mm, 80mm, 104mm and 135mm [1, 17]. Both detector
types work on the same general principle. A particle passing through ionizes the
silicon atoms produces electron hole pairs. These are then detected as currents in
the applied electric field [18]. The VXD is mainly used for track reconstruction.
It has to be of very high resolution for a precise reconstruction of decay vertices
of short lived particles like the K0

s [1].
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Central Drift Chamber CDC

The core tracking device of Belle II is the central drift chamber CDC. It is a
large volume drift chamber filled with a mixture of He and C2H6 gas in a ratio
of 50:50 that extends out to a radius of 1130mm from the beam axis. The CDC
contains 14,336 sense wires arranged in 56 layers. These wires are either aligned
with the magnetic field (axial) or skewed (stereo) [1]. The electron avalanche
resulting from an ionizing particle passing causes a current between the wires
and the cathodes lying in between. This results in an electric signal in the wires.
Since the drift velocity is known, one can deduce the distance between the wire
and the passing particle from the time it takes for the ionization electrons to
reach the wire [14, 15]. By combining the information from both the axial and
stereo wires, the particle tracks can be reconstructed [1].

3.3.2 Cherenkov Detectors

In addition to the information about the momentum of a particle, one also needs
to know its speed to obtain the mass for a valid particle identification. A common
effect used for this measurement is the emission of cherenkov radiation by a
particle traveling faster than the speed of light in a medium. The cherenkov
radiation is emitted in a cone pointed in the flying direction of the particle. Its
opening angle is given by the speed of the particle βc and the speed of light c

n
with

n being the refractive index in the surrounding medium via the formula [8, 19]:

cosθ =
1

nβ
. (4)

For high velocities the angle θ approaches an asymptotic maximum at θmax =
arccos( 1

nc
). In this high velocity limit, the opening angles hardly change with

β. Consequently for a particle with known momentum, the separation between
other particle species becomes harder, the higher its velocity is [19].

Time of Propagation TOP

The cherenkov detector in the cylindrical barrel with polar angles of f 31◦ to
128◦ is called the time of propagation (TOP) detector. It consists of 45 cm wide
and 2 cm thick quartz bars with photo anodes mounted at the end. It measures
the time dependant projection including reflections of the cherenkov cone onto
the photon detector. Since a cherenkov photon is reflected at the borders of the
detector volume, its path and thus the time to propagate through the detector
is dependant on the opening angle θ of the cherenkov light cone [1, 20].

At the TOP detector the particle identification is in practice done by com-
paring the detector outcome wit that theoretically predicted for each particle
species hypothesis passing through with given track and momentum. This is
especially important for separation of kaons and pions, but lacks for pions and
muons because of their similar mass [1, 21].
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Aerogel Ring Imaging Cherenkov Detector ARICH

The forward endcap region of 14◦ to 30◦ is equiped with an aerogel ring imaging
cherenkov detector (ARICH). The ARICH measures the opening angle of the
cherenkov lightcone directly. To enhance the intensity of the cherenkov radiation,
it makes use of two layers of different refractive indices, so that their cherenkov
cones are overlapping at the photon detector. It consists of two layers of aerogel
of 2cm thickness each and refractive indices n = 1.045 and n = 1.055. The
opening angles of the cherenkov cones are different in the two layers according to
equation 4. The cherenkov photons are then detected by a very sensitive hybrid
avalanche photon detector (HAPD). Again a likelihood for each particle species
hypothesis can be determined [1].

3.3.3 Electromagnetic Calorimeter ECL

Outside of the central drift chamber lies the electromagnetic calorimeter (ECL).
It consists of caesium iodide crystals doped with thallium CsI(Tl) which act as
a scintillator. The detector covers around 90% of the solid angle in the center
of mass system of the collision [1]. A charged particle hitting a crystal produces
a particle shower and dispenses a lot of energy. The exited scintillator crystal
emits light on relaxation to lower energy states, which can be measured to obtain
the energy [8]. In general three types of interactions with the detector crystals
may take place. These are electromagnetic and hadronic showers as well as ion-
ization [22]. Electrons hitting the ECL mostly emit bremsstrahlung, which is
suppressed for other particles due to their higher masses. As electrons have a
low mass they deposit nearly all of their energy in the ECL and are therefore
easy to detect using this device. Hadrons on the other hand mostly interact via
the strong interaction [8]. These events can be separated from electromagnetic
interactions via the cluster shape, which can be obtained from the measurements
of the individual crystals [1, 22].

3.3.4 KL and Muon Detector KLM

The last subdetector of Belle II is the KL and muon detector KLM, which lies
outside the solenoid magnet. It consists of altering layers of 4.7cm thick iron
plates and sensitive detector elements. Because of its positioning at the outer
edge of the detector, most particles produced in a reaction will be shielded by the
ECL and solenoid magnet and do not reach the KLM. Particles that can reach
the KLM are muons as well as long lived hadrons likeKL and some charged pions.
The muons reach the KLM since in contrast to electrons they are much heavier
and therefore hardly emit bremsstrahlung. They instead mostly loose energy via
ionization. Each track from the inner detectors is extrapolated outwards with
the muon hypothesis and then compared to hits in the KLM to discriminate
against other particle species [1, 23].
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4 Methods of Data Analysis

In this section a brief overview of analysis methods important for this thesis is
given. This includes some underlying concepts and methods like Monte Carlo
simulations and likelihood, that are not explicitly used for this thesis analysis,
but that are required to understand the data sample and the concept of particle
identification. Also the tag and probe method and calculation of sWeights will
be explained.

4.1 Monte Carlo Simulation

A common tool for studying the performance of a detector and its evaluation
methods are Monte Carlo simulations. In these simulation the physics processes
are simulated by a event generator. The detector information is produced in
detail by a detector simulation. These simulations are of course also dependant
on the detectors software. In case of Belle II the development of the Belle II
analysis software framework basf2 is still ongoing and the evaluation of old data
is reproduced by new versions of the software. Therefore also the Monte Carlo
simulation data is produced for each version of basf2. The simulations are labeled
as MC followed by the number that indicates the production software version.
Also the condition of the detector and the beam can change over time. There-
fore the simulation can be run dependent noted as ”rd”, if the condition of the
detector for a specific data taking run is taken into account, or run independent
referred to as ”ri” [1].

The big advantage of Monte Carlo data is the fact, that the truth, for exam-
ple the true species of a particle, is known. In the following quantities calculated
using this truth information are referred to as using MC truth. This truth knowl-
edge can also sometimes be ambiguous. The reconstructed tracks in the detector
from the detector simulation have to be matched to the trajectories of a particle
with known species from the physics simulation. This can be sometimes ambigu-
ous, but still provides information about the true identity of most events.

The data sample used in the analysis of this thesis stems from MC15ri simu-
lation of the detector. A simulation is used instead of real data, since the truth
information offered is required as a benchmark to compare the performance of
the background subtraction to.
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4.2 Likelihood

The likelihood is a measure of how well observations fit to the predictions of a
model. To define the likelihood one first needs to introduce probability density
functions (PDF). A PDF f(x; p) describes the probability distributions for each
observable x and parameter set p. Since its a probability density the PDF is
positive and normalized, so that its integral is equal to one over the allowed
range of the observable x for any set of p values. From the PDF one can define
the Likelihood of an event e with given observables xe as [10]:

Le(p) = f(xe; p). (5)

Based on this one can define the negative log likelihood for later ease of
use. The total likelihood of a data set of multiple events is the product of the
likelihoods of the single events or alternatively the total log likelihood is the sum
of the single event log likelihoods [10]:

L(p) =
∏
e

Le =
∏
e

f(xe; p). (6)

−logL(p) = −
∑
e

log(Le). (7)

4.3 Charged Particle Identification

The Belle II detector allows us to distinguish between all types of particle species
that can occur after the collision process. This includes all proposed charged par-
ticle species hypothesis which are electrons, muons, pions, kaons, protons and
deuterons. Each sub detector is particularly suitable for identifying certain types
of particles and has different separating powers [1].

For a given track, each sub detector the track has passed, can make a likeli-
hood statement for each particle species hypothesis. This indicates, how likely
it is, that a given track was of a given particle species. However as explained, it
is not feasible to use the likelihood of just one detector to receive a valid result,
since each detector is especially suited for the separation of certain particles.
Therefore one can combine the likelihoods for a particle species hypothesis h
from multiple detectors [1]:

L(h) =
∏
det

Ldet(h). (8)

Often one wants to separate only two species. For that the likelihood ratio
can be calculated to quantify the separation power between two types of particle
hypothesis h1 and h2. Using the corrected equation found in [1], we can write:

L(h1 : h2) =
L(h1)

L(h1) + L(h2)
=

1

1 + elogL(h2)−logL(h1)
. (9)

If L(h1 : h2) is greater than 0.5 the particle is more likely to be of species h1

whereas otherwise the track resembles type h2 more.
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In the same way, one can define a global likelihood, which will also be referred
to as the particle ID, for the species h by calculating the ratio between the
likelihood L(h) and the sum over the likelihoods of all species hypothesis hi [24]:

Lglobal(h) =
L(h)∑
hi
L(hi)

. (10)

4.4 Particle Identification Efficiencies and the Tag and
Probe Method

Efficiencies measure, how good a detector is in assigning a particle its species. We
want to measure efficiencies to determine the effect of particles that are wrongly
identified and to crosscheck the simulated data. The particle identification effi-
ciencies are dependant on kinematic variables like momentum p and polar angle
θ [1]. The efficiency ϵ can be computed as the number of particles correctly iden-
tified as belonging to a given species Nid(p, θ) divided by the total number of all
particles of that species Ntot(p, θ) accepted in the detector in a given momentum
and polar angle bin [2]:

ϵ =
Nid(p, θ)

Ntot(p, θ)
. (11)

However to compute efficiencies in that way, we need a pure sample of tracks,
of whom the particle species is known. One method to obtain such a sample
is the tag and probe method. It is performed on known decay modes into two
particles. The underlying data set therefore consists of events of two particles.
It is assumed, that the species of both particles can be tested independently. If
two particles stem from the same decay and the species of one of the particles is
known, the species of the other one can be automatically tagged. By performing
particle identification on the second particle, the so called probe particle, the
particle identification efficiency can be obtained [3].

To do the tag and probe approach, some cuts have to be applied to the data.
On the initial data we make a tight selection on the tag particles particle ID for
the particle species we want to test the efficiency of. On that set of so called
tag cut data background subtraction utilizing the methods specified below is
performed. After that only events remain, that are believed to stem from the
decay, we want to use for the efficiency calculation. If the particle ID selection
on the tag particle was right and the background subtraction was done correctly,
the remaining events should only be such, where the probe particle is truly of
the species, we want to investigate. Therefore the particle ID efficiency ϵ can be
calculated as the fraction the selected events, where the probe particles species
is correctly identified, make up of all events [3]:

ϵ =
Number of passing probe particle events

Number of all events
. (12)
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The denominator corresponds to the number of all events after the tag cut
and background subtraction. The numerator corresponds to the number of those
events, where the probe particle passes the particle ID criterion and is thus cor-
rectly identified. Those numerator events will be referred to as after the probe
cut.

As we can see from equation 12, the efficiency calculation only requires the
knowledge of the number of numerator and denominator events, not which exact
events were selected. To be able to calculate the efficiency in bins of momentum
and angle, we also need to reconstruct the distribution of the signal events in
those variables. This can be achieved using the sP lot background subtraction.

4.5 sPlot Method

The sP lot technique was developed to extract the distribution of signal type
events from an event sample made up of multiple contributions. So effectively it
is a type of background subtraction technique. The sP lot method can be used
on a data sample consisting of contributions of several sources, that we want to
distinguish. These are in our case signal and background. For the data sample
there exists a set of observables, that we can determine for each data point and
therefore construct histograms. These histograms count the combined events
all sources. A set of observables, for which we know the distribution functions
for both signal and background, can be defined as the so called discriminating
variables. The distribution function in the discriminating variables of signal and
background has to be different. The remaining observables, that are not defined
as discriminating variables, are called control variables [4].

We now want to obtain the histograms in the control variables for only sig-
nal type events. The sP lot method does that by assigning a weight to each
event, that is constructed from the known distribution functions fs(m) and fb(m)
for signal and background in the discriminating variable m. This is called the
sWeight. From the weighted sample one can extract the count distributions for
control variables that are uncorrelated to the discriminating variables. In case of
a correlation existing between discrimination and control variable the resulting
distributions from the sWeights may not be valid [4].

To calculate the sWeights, one has to first define some more quantities. For
each event e its value of the discriminating variable is denoted as me. The
total number of events of signal and background are referred to as Ns and Nb.
These can be introduced as so called yield parameters for the PDF model in the
discriminating variable, to describe the counts with the otherwise normalized
PDF. Finally we need the covariance matrix Vij of the likelihood of the data
using the given PDF model. The likelihood L is calculated using equation 6. The
covariance matrix element Vij is then computed for the signal and background
yield. For i, j being s, b for signal and background it is defined as [4]:

V −1
ij =

∂2(−L)
∂Ni∂Nj

. (13)
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From all these quantities one can define the sWeights sP(me). They can be
computed for each event using the following formula [3, 4]:

sP(me) =
Vssfs(me) + Vsbfb(me)

Nsfs(me) +Nbfb(me)
. (14)

In case the covariant matrix element Vsb = 0 and Vss = 1, the sWeight sP(me)
is just the probability of an event with discriminating variable values me being
a signal event.

From the sWeights, one can reconstruct histograms of only signal events in
the control variable. The number of signal events Ns(B) in the control variable
bin B can be obtained by summing over the sWeights sP(me) of all events eB
that are in the given control variable bin B [4]:

Ns(B) =
∑
eB

sP(meB). (15)

The standard deviation σs of the number of events in that bin can be calcu-
lated as the square root of the sum of squares of the sWeights sP(me) [4]:

σs =

√∑
eB

sP2(meB). (16)
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5 The J/Ψ Data Set

5.1 Decay Modes of J/Ψ

The decay modes of J/Ψ can be distinguished into hadronic decays and leptonic
decays. Hadronic decays are such decays, that have only hadrons and exchange
bosons in the final state and therefore involve predominantly the strong interac-
tion. On the other hand for leptonic decays there are only leptons and exchange
bosons produced, which predominantly happens via the electromagnetic interac-
tion [6]. In the decay of J/Ψ those two decay types occur roughly at equal rates.
The hadronic decays have a branching fraction of (87.7±0.5)% whereas leptonic
decays have a branching fraction of (11.9 ± 0.1)% [9]. The hadronic decays to
a large extend are decays involving three gluons or two gluons and a photon,
which then produce pions, kaons and other light resonances. On the other hand
the leptonic decays involve a photon [6]. The leptonic decays have about equal
branching fractions into pairs of electrons e+e− with (5.971±0.032)% and muons
µ+µ− with (5.961± 0.033) % [9].

5.2 Data Sample

In this analysis the muon identification efficiency is ought to be tested using the
decay J/Ψ → µ+µ−. In this section we will introduce the data sample used for
that analysis and explain the cuts that are initially applied.

The data sample consists of 4,925,436 events from the MC15ri Monte Carlo
simulation of the detector. Each event contains two muon candidate particles
which will be denoted as particle 0 and particle 1. For each of these particles the
total momentum p, polar angle θ and muon ID are stored along with some other
variables unused in the analysis. The muon ID is the likelihood of a given particle
being a muon determined from the detector results as in equation 10 [24]. Also,
for each event we calculate the invariant mass mµµ of the two particle system.
Since the events stem from a Monte Carlo simulation, for each event it is also
known, if it comes from a true J/Ψ decay. Such events, that contain two true
muons that stem from a J/Ψ decay are called signal, whereas the rest of the
events will be referred to as background.

The data sample used has undergone some initial selection. These cuts will
just be briefly described here. More detailed information can be found in [3].
Firstly, since we are reconstructing the decay of a J/Ψ, the two tracks have to
originate from the same interaction point. In the lab frame the difference in
coordinates for this point is required to fulfill: |∆z| < 5 cm and |∆r| < 2 cm.
Moreover it is required for the invariant mass mµµ to be within 2.8 GeV/c2 to
3.3 GeV/c2. Both particles are required to have clusters in the ECL calorime-
ter which are matched to tracks in the inner detectors. Furthermore, to reduce
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beam induced background, it is required for the momentum p of the particles
that p > 0.1 GeV/c. To suppress e+e− → qq events, it is required for the ratio
of the second order and zeroth order Fox-Wolfram moments to be below 0.4. To
further suppress e+e− collision background processes, for each event at least five
tracks are required in the detector [3].

We use the tag and probe approach as explained in section 4.4 to calculate
efficiencies. To fully use the available data, the data sample can be symmetrized.
This is done by using particle 0 as tag muon and particle 1 as probe muon as well
as particle 0 as probe and particle 1 as tag muon. This effectively doubles the
data set. After that we make the tag cut. In the analysis of the systematic cor-
rections framework the muon ID is required to be greater than 0.95 [3]. However
for all of the following analysis the tag cut is only done for a muon ID value of
0.9. This does not effect the results of the analysis. After the probe cut a total of
5,410,384 events remain. Note that this number is higher than the initial num-
ber of events in the data set, which is possible since the sample was symmetrized.

The resulting data set can now be plotted in several variables to get an idea
of its structure. In figure 4 the 2d histogram of the absolute momentum of the
two particles is plotted. One can see that the data set is not populated for most
of the two particle momentum space. However, a band can be identified, which
mostly stems from the J/Ψ decay. This peak ranges from a minimal momentum
of about 0.6 GeV/c to a maximum tail that extends to about 4 GeV/c for each
of the two particles. Most of the sample events are therefore contained in this
momentum range. In figure 5 one can see the 2d histogram of the invariant mass
mµµ of the two muon system and the probe muon momentum. The peak at the
J/Ψ mass of 3.1 GeV/c2 is clearly visible. We also observe that the number of
signal and background events is highest between momenta of 1.0 and 2.5 GeV/c
and drops of for higher and lower momenta.
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Figure 4: 2d histogram in the momenta of the two particles for the data set after
initial cut to tag particle muon ID > 0.9.
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Figure 5: 2d histogram in probe particle momentum p and invariant mass mµµ

for the data set after initial cut to tag particle muon ID > 0.9.

In figure 6 one can see a 2d histogram of cos θ of the two particles. Note that
the data is not symmetric in exchanging the two particles, since the tag cut was
applied, which cuts on the muon ID of one of those particles. Apart from that
the distribution has higher values in forward direction of the particle collision,
which corresponds to the upper right corner of the plot. This makes sense con-
sidering that the center of mass frame of the e+e− collision is Lorentz boosted.
Therefore statistically the decay products of any reaction will also be boosted
forward. The distribution has its maximum for one particle flying forwards and
the other one backwards. The horizontal and vertical stripes at cos θ = -0.63
and cos θ = 0.85 are the effect of gaps between the barrel and end cap region of
the ECL [3]. In figure 7 the 2d histogram of invariant mass mµµ and the cosine
of the probe particle polar angle θ is plotted. Again the J/Ψ signal peak lies at
an invariant mass of around 3.1 GeV/c2. In the forward and backward direction
the peak becomes blurred out.
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Figure 6: 2d histogram in the cosine of the polar angle of the two particles for
the data set after initial cut to tag particle muon ID > 0.9.

22



Figure 7: 2d histogram in the cosine of the probe particle polar angle θ and
invariant massmµµ for the data set after initial cut to tag particle muon ID > 0.9.

The discriminating variable for the sWeight calculation is the invariant mass
mµµ. To obtain a distribution in this variable the data sample was binned into a
total number of 300 invariant mass bins of equal width ranging from 2.8 GeV/c2

to 3.3 GeV/c2. After binning the number of events in each bin follows a Poisson
distribution. The Poisson distribution only has one parameter, the expectation
value of the rate. Therefore the standard deviation can be obtained only from
knowing the expectation value. If we assume the number of events in the bin
to be at the expectation value, the standard deviation can be calculated as the
square root of the number of events in the bin. This is used for plotting and
propagating uncertainties as done in appendix A.

5.3 Muon Background

The data sample described in section 5.2, that will be investigated in this analysis,
is composed of two contributions. The J/Ψ → µ+µ− signal and the background.
This background is comprised of events of many reactions and decays, that occur
after the high energy collisions at Belle II. Because of the initial event selection
these events are in an invariant mass range between 2.8 GeV/c2 and 3.3 GeV/c2

and stem from the same interaction point. After the tag cut, described in section
5.2, only some of these events remain, that can not be removed only by these
cuts. These are on the one hand the events, where the tag particle is no muon,
but is wrongly identified as such, and on the other hand the events, that contain
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a muon and that do not stem from a J/Ψ → µ+µ− decay but from other muon
producing decay modes. These combined backgrounds do not form distinctive
peaks but a uniform background distribution, that we need to adjust for in the
efficiency calculation.

5.4 Model for Probability Density Function in mµµ

In this section the model for the probability density function used in this analysis
will be discussed. It describes the distribution of events involving two particles
after the cuts described in section 5.2 including the tag cut dependant on invari-
ant massmµµ of the two particle system. The PDF and its parameterization used
in this work originates from the systematic corrections framework, the current
framework for such analyses. All functions, values and parameter ranges de-
scribed in this section were taken over unchanged from this framework [3, 5, 25].

The PDF is a function of the invariant mass mµµ of the µ+µ− system and
is defined and normalized in an invariant mass range from 2.8 GeV/c2 to 3.3
GeV/c2. The parameters of this functin will later be determined by a fit to the
data. It is constructed as the sum of the signal and the background PDFs. Each
of those PDFs is also assigned a yield variable, that modulate what fraction of
the distribution is made up of signal and background events. The signal yield
Ns describes the number of signal events, whereas the background yield Nb de-
scribes the number of background events [3]. Since the total PDF needs to be
normalized, only the ratio of signal yield and background yield matters for its
overall shape. The individual values of the yields provide additional information
in form of the number of events of signal or background [26]. This is especially
useful for later sWeight calculation as in equation 14, as both the PDFs fs(m)
and fb(m) as well as the event numbers Ns and Nb for signal and background
are needed.

The PDF is a density function with the units counts per mass step. To be
able to compare the PDF to absolute counts in form of a histogram binned in the
invariant mass mµµ, the PDF can be multiplied by a factor of bin width times
the total number of events, which is sum of signal yield Ns and background yield
Nb. This reproduces the distribution for a given total number of events.

The signal part of the PDF is again constructed as the sum of two functions.
A Gaussian function describes the symmetrical peak and the asymmetrical part
of the distribution is modeled by a bifurcated Gaussian. The Gaussian has two
parameters, the mean µ and its standard deviation σgaus also called width. The
bifurcated Gaussian is a distribution function with two parameters σL and σR for
the standard deviation on the left and rights side of its peak. The invariant mass,
where the bifurcated Gaussian reaches its maximum, is fixed at the same value
as the symmetric Gaussian distribution. The two σL and σR parameters of the
bifurcated gaussian as well as the ratio of heights of the Gaussian and bifurcated
Gaussian, Rgaus were determined by an initial fit and then fixed to their value [3].
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In total the signal PDF has up to five independent parameters, but only two
of them are free for the final fit. The range of the fit parameters is constricted
to a relative variation of 0.02 for the mean µ and 0.4 for the standard deviation
σgaus. The starting values for the fit and which parameters are fixed is listed in
table 4.

Table 4: Parameters of the signal PDF and their starting values as well as
information if they are free for the fit.

Parameter Starting value Status for the fit
µ [GeV/c2] 3.096 free

σgaus [GeV/c2] 7.19222 · 10−3 free
σL [GeV/c2] 0.027986 fixed
σR [GeV/c2] 0.0188336 fixed

Rgaus 3.7157 fixed

The background PDF is a second order polynomial. It is constructed as sum
of chebychev polynomials of the first kind, which serve as a basis. The zeroth
order coefficient is set to one, whereas the other two parameters C0 and C1 have
an allowed range for the fit of [-1, 1] each [25, 26]. Their starting values are listed
in table 5. The resulting PDF in terms of C0 and C1 is:

fBackground(m) = 2C1m
2 + (C0 − C1)m+ 1. (17)

Table 5: Parameters of the background PDF and their starting values as well as
information if they are free for the fit.

Parameter Starting value Status for the fit
C0 [c2/GeV] -0.4 free
C1 [c2/GeV] 0 free

The fitting is done using a binned maximum likelihood fit [3]. In this method
the likelihood L(p) depending on the parameter set p, which is calculated using
equation 6, is maximized. This means the resulting parameters are chosen in
such a way, that the data is the most probable outcome using the resulting PDF
model [2]. The fit also determines the covariance matrix of the likelihood as in
equation 13, which is needed for sWeight calculation.
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6 Results

6.1 Problem

To check, if the background subtraction and all calculations necessary for the
efficiencies of the tag and probe approach are valid, one can compare the efficiency
results to those utilizing MC truth data. For the MC truth it is known, whether
the decayed particle for tag and probe is the desired J/Ψ or not. Therefore the
MC truth efficiencies are the ideal efficiency result for the simulation data and
should be reached for flawless background subtraction.

The analysis software used for this background subtraction is called the sys-
tematic corrections framework [5, 25]. It also includes code to produce particle
identification efficiencies in bins of kinematic variables like momentum or po-
lar angle. In figure 8 the muon identification efficiencies are plotted using the
systematic corrections framework for MC truth as well as the background sub-
traction using sWeights in bins of the probe particle momentum. In this figure
one can see, that for momenta smaller than about 1.5 GeV/c the efficiency of
the sWeights is greater than the MC truth efficiency and even greater than one,
which should in theory not be possible for efficiencies. This suggests that in
the background subtraction there may be some correlations causing this issue.
Therefore in the following sections an attempt is made to understand and fix
those correlations in the background subtraction. Different approaches will be
made to fix particular deviations and correlations between kinematic variables
in the efficiency calculation.

Figure 8: Tag and probe efficiencies in bins of the probe particle momentum
in GeV/c from MC truth data and using background subtraction with sWeight
from the systematic corrections framework.
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6.2 Fitting the PDF and Calculating sWeights

The first step is to produce sWeights and efficiencies to have a benchmark to see
how much the different approaches improve the efficiency estimates. This will
be in part redone independently form the systematic corrections framework, to
better understand the exact procedure of obtaining sWeights and efficiencies.

To calculate sWeights, we first need to fit the PDF, which was described
in section 5.4, to the data sample after some initial cuts as described in sec-
tion 5.2. The resulting parameters are listed in table 6. In figure 9 the fitted
PDF and the underlying MC data are plotted. The MC data distribution has
a peak at an invariant mass of around 3.09 GeV/c2, which corresponds to the
J/Ψ signal. The background decreases with the invariant mass and is curved
slightly upwards. The subplot shows the deviation in form of a pull calculated as
(MC counts − PDF counts)/

√
MC counts. The pull is fluctuating around zero

for most of the invariant mass range mµµ, which exhibits that the PDF generally
fits the data well. Only directly at the peak, the absolute values of the pull
between MC and PDF are higher, which hints, that the PDF may not fit the
data perfectly for the signal peak.

Figure 9: Invariant mass histogram of MC data for probe particle momenta in
[0, 8] GeV/c and fitted PDF as well as their pull in the subplot.
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Table 6: Resulting PDF parameters after fit to event histogram.

Parameter Fit result
Ns 397107
Nb 5013270

µ [GeV/c2] 3.09711
σgaus [GeV/c2] 6.07465 · 10−3

C0 [c2/GeV] -0.539195
C1 [c2/GeV] 0.0590958

From this PDF the sWeights can be calculated for each event using equation
14. By summing up the weights for each event, one can reconstruct the back-
ground subtracted counts in bins of the momentum. This can be used to obtain
the counts for the denominator and numerator for the efficiency calculation. For
the denominator all events are used, whereas for the numerator only the weights
of events remaining after the probe cut are summed. In figure 10 the denomi-
nator and in figure 11 the numerator counts are plotted in momentum bins for
the probe muon momentum p in a range between 0.5 GeV/c and 3.5 GeV/c.
We observe that the counts for both denominator and numerator drop to almost
zero for momenta close to the borders of the plotting range at 0.5 GeV/c and 3.5
GeV/c, where there are low numbers of events. Both distributions reach their
maximum at around 1.6 GeV/c. What stands out is, that the denominators and
numerators reconstructed from sWeights are systematically lower than the MC
truth values. It turns out, that this is most likely not an effect originating from
the count reconstruction using sWeights but from the yields of the PDF fit. The
total number of events in the data set almost perfectly agrees with the the sum
of signal and background yield. The signal yield however is only 397,107, which
is about 8% smaller than the 433,024 true signal events. The mismatch will
be discussed in more detail in section 6.5. At this point it seems reasonable to
assume, that this PDF related deviation has the same relative effect on denomi-
nators and numerators. The mismatch should then cancel out and it should still
be possible to obtain valid efficiencies.

The efficiencies and their uncertainties are plotted in momentum bins in fig-
ure 12. The error calculation for the efficiencies is specified in appendix A. In the
plot we observe that the efficiencies from the MC simulation and that calculated
from sWeight background subtraction do not match. The efficiencies determined
using sWeights are systematically too high. This could be an effect of the cut
applied to the numerator, which will be considered in more detail in the next
section. Another thing to notice is, that for momenta greater than 3 GeV/c the
uncertainties of the sWeight efficiencies become quite large and are in the same
order of magnitude as the efficiency itself, which is a result of the small amount
of data points in that range.
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Figure 10: Denominators in momentum bins of the probe particle for the calcula-
tion of the efficiencies from MC truth and using sWeight background subtraction.

Figure 11: Numerators in momentum bins of the probe particle for the calculation
of the efficiencies from MC truth and using sWeight background subtraction.
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Figure 12: Efficiencies in momentum bins of the probe particle from MC truth
and using sWeights background subtraction.

6.3 sWeights Before and After Probe Cut

In this section we will try to resolve systematic deviations of numerator and
denominator in respect to each other to the improve the efficiency estimates.
Systematically too high efficiencies as seen in the previous section could either
be the result of a too high numerator or a too low denominator in relation to each
other. This seems very valid when choosing the sWeight approach. Events in the
signal mass range have positive weights, whereas events in the background tail
region have negative weights. These weights are constructed in such a way, that
the total number of events is equal to the number of signal events as estimated by
the PDF fit. Now however a cut is applied on the events before calculating the
number of events, as illustrated in figure 13. This figure shows the invariant mass
distributions for all events and for only signal type events before and after the
probe cut. The plot illustrates, that the probe cut mostly reduces background,
since it is rare to observe two muons or particles identified as such, that do
not stem from a J/Ψ decay in the given invariant mass range. On the other
hand the signal peak is hardly reduced, since signal events contain mostly true
muons of which most are again classified as such. This means, the probe cut
affects the background region much more than the signal. If one now uses the
sWeights constructed for a higher background level before the cut to reconstruct
the number of signal events after the cut, this may cause discrepancies.
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(a) Histogram of all events

(b) Histogram of signal events using MC truth information

Figure 13: Invariant mass histograms of MC data distribution before and after
the probe cut for all events (a) and for the signal events using the MC truth
information (b).
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Figure 14: Invariant mass histogram of MC data after the probe cut for probe
particle momenta in [0, 8] GeV/c and fitted PDF as well as their pull in the
subplot.

Table 7: Resulting PDF parameters after fit to probe cut event histogram.

Parameter Fit result
Ns 375580
Nb 590041

µ [GeV/c2] 3.09707
σgaus [GeV/c2] 5.99748 · 10−03

C0 [c2/GeV] -0.570929
C1 [c2/GeV] 0.0278453

An approach to quantify this potential problem is doing an individual calcu-
lation of sWeights for the events before and after the probe cut. This results in
two sWeights for each event, one to calculate the numerator of the efficiency and
one for the denominator. The denominator sWeights are the same as in section
6.2, whereas the numerator sWeights are calculated individually. The numerator
sWeights are obtained from an individual PDF fit to the data after the probe
cut. Therefore the numerator sWeights only make sense for such events, that
remain after the probe cut. The same PDF parametrization as for the uncut
data as specified in section 5.4 was used for the fit. The fit result is shown in
figure 14 and the resulting parameters are listed in table 7. The PDF fits well to
the data. Only in the signal region some discrepancies can be seen in the pull.
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The resulting numerators are shown in figure 15. We observe, that the numer-
ator values have indeed lowered for event numbers reconstructed using sWeights
from this new fit. The efficiencies obtained for the new numerators are plotted
in figure 16. It exhibits, that the efficiencies now fit better to the MC truth in a
broad range of momentum from 1.4 GeV/c to 2.3 GeV/c. However outside of the
1.4 GeV/c to 2.3 GeV/c momentum range there is still no agreement between
MC truth and sWeight efficiencies. As in the systematic corrections framework
from figure 8 the sWeight efficiencies are still to high outside that range.

Therefore there exists a systematic deviation of the numerator counts, that
was caused by using the wrong sWeights for the probe cut event numbers and
effects the efficiency. This deviation can be resolved by computing individual
sWeights for both the numerator and denominator, but does not lead to full
agreement between MC truth and sWeight efficiency.

Figure 15: Numerators in momentum bins of the probe particle for the calculation
of efficiencies from MC truth and using sWeights for background subtraction with
sWeights calculated from the invariant mass distributions before and after the
probe cut.
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Figure 16: Efficiencies as in figure 12 but including the efficiencies calculated
using numerators from probe cut sWeights.

6.4 sWeights in Momentum Bins

A possible explanation of why the efficiencies as seen in figure 8 do not fit the
MC truth well in certain momentum ranges is a correlation of the the invariant
mass with the momentum of the probe muon. As stated in section 4.5 a cor-
relation between discriminating variable mµµ and control variable probe muon
p can cause the distribution reconstructed from sWeights to not be valid. The
linear correlation between mµµ and p can be calculated from the data easily. The
linear correlation is only 0.04 and will therefore have a negligibly small effect.
To visualize possible correlations one can look at invariant mass histograms of
the data in bins of the probe muon momentum p. Such histograms are shown
in figure 17. The plot exhibits, that the background shape changes in particular
for the low momentum range of 0.5 GeV/c to 1.4 GeV/c. Especially the second
plot of figure 17, where the normalized distribution is shown, exhibits, that the
background for momenta of 0.5 GeV/c to 0.8 GeV/c has a significantly different
gradient. This could be a possible higher order correlation that causes the lack-
ing efficiencies.
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(a) Unnormed histogram

(b) Normed histogram

Figure 17: Invariant mass histogram of MC for the four lowest momentum bins
of the probe particle from 0.5 GeV/c to 1.7 GeV/c as absolute counts (a) and
normalized to integral one (b) for better comparison of the shapes.

An approach to solve this issue is to calculate the sWeights from an individual
PDF for each momentum range. To do this, the data sample was first binned
into bins of the momentum of the probe particle. Since for momenta below 0.5
GeV/c and above 3.5 GeV/c there are hardly any data points as well as no J/Ψ
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signal peak in the invariant mass variable of the data, only the range in between
was considered. A total of ten equidistant bins were used resulting in a bin
width of 0.3 GeV/c. The PDF has to be fitted for each bin individually, again
twice before and after the probe cut. Since the shape was still roughly the same,
the same PDF parametrization with the same starting parameters as described
in section 5.4 was used. The resulting fitted PDF, MC data and their pull are
shown for four selected of the ten total bins in figure 18 and figure 19. We ob-
serve, that the fitted PDF describes the MC data well in all bins. Especially for
the low momentum bins the pull does fluctuate around zero and does not exhibit
any abnormal rises around the signal peak. Therefore the PDF resembles the
data even better than for the fit to the total data set. The fit parameters for all
momentum bins are listed in appendix B.
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(a) No probe cut, p in [0.5, 0.8] GeV/c (b) Probe cut, p in [0.5, 0.8] GeV/c

(c) No probe cut, p in [0.8, 1.1] GeV/c (d) Probe cut, p in [0.8, 1.1] GeV/c

Figure 18: Invariant mass histogram of MC for probe particle momenta in stated
bin range with or without probe cut and corresponding fitted PDF as well as
their pull in the subplot.
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(a) No probe cut, p in [1.7, 2.0] GeV/c (b) Probe cut, p in [1.7, 2.0] GeV/c

(c) No probe cut, p in [2.6, 2.9] GeV/c (d) Probe cut, p in [2.6, 2.9] GeV/c

Figure 19: Invariant mass histogram of MC for probe particle momenta in stated
bin range with or without probe cut and corresponding fitted PDF as well as
their pull in the subplot.

These PDFs are again utilized to calculate sWeights using equation 14. This
has to be done by using the fitted PDF from that momentum bin, an event falls
into. Again the denominators, numerators and efficiencies can be calculated in
probe muon momentum bins. A comparison with the results of the previous
approach from section 6.3 is shown in figure 20, figure 21 and figure 22. In figure
20 we observe, that for low momenta between 0.9 GeV/c and 1.4 GeV/c, the

38



denominators have increased, whereas for higher momenta between 1.4 GeV/c
and 2.0 GeV/c, the denominators dropped slightly. The numerators calculated
using sWeights after the probe cut as shown in figure 21 on the other hand have
decreased for a broad momentum range of 1.0 GeV/c to 2.3 GeV/c. Both nu-
merators and denominators do still not agree with the Monte Carlo truth. The
efficiencies are shown in figure 22. The plot exhibits, that the efficiencies hardly
change in a momentum range of 1.4 GeV/c to 2.0 GeV/c, but have decreased for
momenta between 0.9 GeV/c and 1.4 GeV/c. The efficiencies from sWeights are
therefore now closer to the MC truth efficiencies for this low momentum range,
but still do not resemble the MC truth.

We see, that it is indeed possible to improve the sWeight efficiency estimates
by resolving correlations between the invariant mass of the two particles mµµ and
the probe particle momentum p. However the result still does not fully match
the MC truth efficiencies. The reason must therefore not just lie in the effect of
numerator cuts and correlations of kinematic variables.

Figure 20: Denominators as in figure 10 including denominators calculated using
sWeights calculated in bins of the probe particle momentum.
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Figure 21: Numerators as in figure 11 including numerators calculated using
sWeights calculated in bins of the probe particle momentum.
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Figure 22: Efficiencies in bins of the probe particle momentum including MC
truth efficiencies, efficiencies computed using numerators and denominators from
individual sWeights calculated without binning in the momentum and efficiencies
computed using numerators and denominators from individual sWeights calcu-
lated in bins of the probe particle momentum.

6.5 Mismatch of Signal Counts

In all of the above denominator and numerator figures we observed, that the to-
tal number of events calculated from sWeights is systematically lower than that
of the MC data. As already stated in section 6.2, this is a result of the yield
parameter in the fit, not a deviation that stems directly from sWeights. In this
section the effect of the yield parameters will be analyzed in more detail.

From the PDF fit to the data binned in probe muon momentum p, it is possi-
ble to compare the MC truth signal counts, signal yield parameters and sWeight
sum in momentum bins. In figure 23 those signal counts are plotted. We observe,
that signal yield and sWeight sum mostly agree and their relative deviation is
mostly far under 1%. The MC truth signal counts however are still systemat-
ically about 7% to 15 % higher than the signal yields. Because the deviation
between PDF and MC truth counts is much higher than the deviation between
PDF and sWeights, this hints on an imperfection in the fit rather than in the
calculation of the sWeights.
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Figure 23: Number of signal events in bins of the probe particle momentum
obtained from MC truth, PDF yields and from the sum of sWeights.

Since the number of MC truth events is higher than the PDF signal yield,
but the total number of events is the same, there is a leakage of signal events
into the background for the PDF fit. To see, if this effect is caused by a specific
invariant mass region, in figure 24 the signal part of the PDF and the MC truth
signal events are plotted for events from the whole momentum range between 0
GeV/c and 8 GeV/c. For this plot only the signal part of the PDF as described
in section 5.4 with the fit parameter results from section 6.2 was used. We ob-
serve,that the MC truth signal has a long tail on the left side of the peak, which
is not properly described by the signal part of the PDF. Also the signal peak is
not fully described. This can be especially seen in the pull in the subplot. To
both sides of the signal peak, there is a significant positive pull, which confirms,
that the signal PDF underestimates the true distribution.
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Figure 24: Invariant mass histogram of MC truth signal for probe particle mo-
menta in [0, 8] GeV/c and signal part of the fitted PDF as well as their pull in
the subplot.

A cut to tag muon ID values greater than 0.95 instead of 0.9 in the tag cut
does not change the agreement between signal PDF and data. Also we tried
cutting the invariant mass range of events used in the background region, to
remove the signal tails. This can be done either on only one side or on both
sides of the peak. However, if we are only using a reduced mass range, the fit
is no longer able to determine the curvature of the background properly. This
causes even more leakage between signal and background and does not lead to
a valid result. Another possibility to improve the PDF fit would be, to again fit
the parameters of the PDF, that were originally fixed as described in section 5.4.
This would allow the PDF to better describe the signal tails by adjusting the
width parameters of the bifurcated Gaussian. However, this also did not improve
the agreement of signal data and signal PDF.
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7 Conclusion and Outlook

We used MC simulation data to investigate the J/Ψ → µ+µ− decay mode and
determine muon particle identification efficiencies directly from detector data.
We use the sP lot method to statistically subtract the remaining background
events in the selected J/Ψ sample, that could not be rejected in the event se-
lection. For that we construct sWeights for each event, based on a PDF in the
invariant mass mµµ of the two particle system, in which signal and background
exhibit different distributions. These sWeights should allow us to reconstruct
the distribution of signal events in the momentum variable p, which is necessary
for muon identification efficiency computation. However, we are unable to reach
agreement with the real signal event distribution in the momentum p as known
from Monte Carlo truth, as the signal counts after background subtraction are
systematically too low. Also we observe, that the efficiencies computed using the

sP lot are generally too high.

To improve the efficiency estimates we calculate different sWeights to obtain
the number of signal events and the number of signal events after the probe cut
for the efficiency calculation. This results in better agreement with the Monte
Carlo truth efficiency for momenta between 1.4 GeV/c and 2.3 GeV/c. We also
account for correlations between the invariant mass mµµ and the momentum p,
which could affect the validity of the sWeights. This brings only small improve-
ments for the efficiency estimates and hardly any for the event count distribution
in the momentum variable p. So accounting for these two effects does improve
the resulting efficiency estimates, but is not sufficient to reach full agreement
with the Monte Carlo truth efficiencies in the complete momentum range. Only
adjusting correlations does not fully solve the problem we observed in the effi-
ciencies.

We also find out, that the PDF parametrization in mµµ used for the sP lot
method does not describe the mµµ distribution of signal events after the cuts
explained in section 5.2. Especially the tails to both sides of the J/Ψ signal peak
can not be described. This most likely leads to the systematically too low signal
event number. Our hypothesis is, that this may also cause the discrepancies in
the efficiency, that we still observe.

Future analysis may address this issue via two possible routes. First, one
could apply additional cuts on the data set, which remove the tails of the sig-
nal. The other possibility is to improve the PDF parametrization. This PDF
parametrization should be able to better describe the signal shape, especially in
the tail regions. As we have seen in this analysis there exist correlations between
kinematic variables in the sample, that have an effect on the efficiency deter-
mination. Therefore it will probably be also necessary to use the methods to
resolve correlations presented in this thesis again on an analysis with a better
PDF parametrization. Finally, the improved background subtraction could be
used on real experimental data from the Belle II experiment to compare the re-
sults of muon identification efficiencies to those obtained from the Monte Carlo
simulation. This enables us to better understand and improve PID at Belle II.
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A Uncertainties

In this section the uncertainty propagation for the efficiency will be done at linear
order. The efficiency ϵ can be calculated using the number of signal events, that
are also passing the probe cut, which is referred to as Np and the number of
all signal events Na. Na can be again split up into passing events Np and non
passing events Np:

ϵ =
Np

Na

=
Np

Np +Np

. (18)

This trick of rewriting the efficiency as a function of Np and Np makes the
calculation of the uncertainties easier because of Np and Np being uncorrelated.
This allows us to ignore the otherwise necessary covariance terms between the
uncertainties of Np and Na. The uncertainties of Np and Np will be denoted as
σNp and σNp

. The formula for linear uncertainty propagation for the efficiency ϵ
then is:

σ2
ϵ =

(
∂ϵ

∂Np

σNp

)2

+

(
∂ϵ

∂Np

σNp

)2

=

((
1

Np +Np

− Np

(Np +Np)2

)
σNp

)2

+

(
Np

(Np +Np)2
σNp

)2

.

(19)

To calculate the uncertainties for MC simulated data, we only need to plug
in the values for σNp and σNp

. As stated in section 5.2 the uncertainty of the
count number of a bin can be calculated as the square root of its count value.
Using equation 19 we get:

σ2
ϵ =

(
1

Ns +Np

− Np

(Np +Np)2

)2

Ns +

(
Np

(Np +Np)2

)2

Np

=
ϵ

Np +Np

(
1− Np

Np +Np

)
= ϵ2

(
1

Np

− 1

Na

)
.

(20)

For the sWeights the event numbers are obtained as sum of the sWeight,
which will for simplicity also noted using Np and Np. As stated in section 16 the
standard deviation for the sWeight event number is the square root of the sum
of the squares of the sWeights. For simplicity the sWeights will be denoted as P
and the sum will just index, which types of events will be summed. So p means
summing the events of all events passing the probe cut and p the weights of all
non passing events. Plugging all that into 19, we obtain a simplified formula:

σ2
ϵ =

(
1

Np +Np

− Np

(Np +Np)2

)2∑
p

P2 +

(
Np

(Np +Np)2

)2∑
p

P2

=
1

(Np +Np)4

(
Np

∑
p

P2 +Np

∑
p

P2

)
.

(21)
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The last case we need to determine is that of different sWeights for numerator
and denominator of the efficiency. For this case we can no longer use the trick to
split into passed and non passed event numbers, since the signal event number
in the denominator and in the numerator are the sum of different sWeights.
However we do not know their correlation. Since this analysis only aims to
estimate the effects, that the corrections done, have on the efficiencies and the
uncertainties of the efficiencies are small, it is justified to make an estimate of the
uncertainties. We assume, that the signal event number for those efficiencies is
the same for numerator and denominator. This allows us to again use equation
21 to calculate the uncertainties for the efficiencies in case of individual sWeights
for numerator and denominator.

B Fit Results

In this section the fit results for the parameters of the PDF fitted in bins of the
probe muon momentum are listed. There is a total of twenty parameter sets, two
for each of the ten momentum bins. The results for the fit before the probe cut
are listed in table 8 and those for the fit after the probe cut are listen in table 9.
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Table 8: Resulting PDF parameters in bins of the probe particle momentum
before probe cut.

Parameter Result for [0.5, 0.8] Result for [0.8, 1.1] Result for [1.1, 1.4]
Ns 155 16861 76172
Nb 52836 394841 957577

µ [GeV/c2] 3.098989 3.09716 3.09713
σgaus [GeV/c2] 0.00765234 0.00675343 0.00612061
C0 [c2/GeV] -0.122792 -0.517511 -0.590550
C1 [c2/GeV] -0.031883 0.0526368 0.0734798

Parameter Result for [1.4, 1.7] Result for [1.7, 2.0] Result for [2.0, 2.3]
Ns 113010 97299 57020
Nb 1096785 881795 623686

µ [GeV/c2] 3.09709 3.09709 3.09712
σgaus [GeV/c2] 0.00597886 0.00598443 0.00610819
C0 [c2/GeV] -0.540896 -0.528848 -0.532402
C1 [c2/GeV] 0.0557320 0.0561118 0.0572429

Parameter Result for [2.3, 2.6] Result for [2.6, 2.9] Result for [2.9, 3.2]
Ns 26041 8678 1750
Nb 404996 248536 146114

µ [GeV/c2] 3.09703 3.09744 3.09765
σgaus [GeV/c2] 0.006169819 0.00638223 0.00622218
C0 [c2/GeV] -0.554545 -0.559809 -0.535587
C1 [c2/GeV] 0.0704204 0.0605022 0.0585554

Parameter Result for [3.2, 3.5]
Ns 1
Nb 87349

µ [GeV/c2] 3.03408
σgaus [GeV/c2] 0.0100545
C0 [c2/GeV] -0.479895
C1 [c2/GeV] 0.0439832
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Table 9: Resulting PDF parameters in bins of the probe particle momentum for
fit after the probe cut.

Parameter Result for [0.5, 0.8] Result for [0.8, 1.1] Result for [1.1, 1.4]
Ns 56 14615 71784
Nb 4536 37129 104688

µ [GeV/c2] 3.09637 3.09710 3.09707
σgaus [GeV/c2] 0.00431533 0.00648870 0.00608026
C0 [c2/GeV] -0.070264 -0.624335 -0.611539
C1 [c2/GeV] -0.060084 0.0679278 0.0310872

Parameter Result for [1.4, 1.7] Result for [1.7, 2.0] Result for [2.0, 2.3]
Ns 107467 92533 54191
Nb 144702 131902 90480

µ [GeV/c2] 3.09705 3.09707 3.09707
σgaus [GeV/c2] 0.00587752 0.00587150 0.00601073
C0 [c2/GeV] -0.519476 -0.537071 -0.582552
C1 [c2/GeV] 0.0015867 0.0104130 0.0410569

Parameter Result for [2.3, 2.6] Result for [2.6, 2.9] Result for [2.9, 3.2]
Ns 24854 8320 1645
Nb 48265 18194 6616

µ [GeV/c2] 3.09707 3.09713 3.09760
σgaus [GeV/c2] 0.00626672 0.00647046 0.00690280
C0 [c2/GeV] -0.664348 -0.721070 -0.536558
C1 [c2/GeV] 0.0671912 0.0928582 0.0784475

Parameter Result for [3.2, 3.5]
Ns 131
Nb 3513

µ [GeV/c2] 3.10029
σgaus [GeV/c2] 0.00707937
C0 [c2/GeV] -0.436334
C1 [c2/GeV] 0.0053636
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