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Abstract

This work presents the search for the decay of a charged B-meson into a charged kaon and a
pair of neutrinos via graph-tagged analysis, which is an approach based on graph neural network,
in Belle II, which is operating at the asymmetric electron-positron collider SuperKEKB located
at KEK, Tsukuba, Japan. B+ → K+νν̄ is a flavour changing neutral-current process that is
highly suppressed in the Standard Model, and imposes many experimental challenge posed by
the undetected pair of neutrinos in its final state. However, its branching fraction is accurately
predicted in the Standard Model of particle physics, thus, a precise measurement of this branch-
ing fraction offers a unique opportunity to probe beyond Standard Model contributions. The
expected upper limit on the branching fraction of B+ → K+νν̄ is determined to be 0.987×10−5

at 90% confidence level, using simulated events.



Abstract

Ce travail présente la recherche de la désintégration d’un méson B chargé en un kaon chargé
et une paire de neutrinos via une analyse basée sur un étiquetage par graphe, qui est une ap-
proche fondée sur les réseaux de neurones graphiques, dans l’expérience Belle II, qui fonctionne
au collisionneur électron-positron asymétrique SuperKEKB situé à KEK, Tsukuba, Japon. Le
processus B+ → K+νν̄ est une transition de courant neutre à changement de saveur, fortement
supprimée dans le Modèle Standard, et pose de nombreux défis expérimentaux en raison de la
paire de neutrinos non détectée dans l’état final. Cependant, sa fraction d’embranchement est
précisément prédite dans le Modèle Standard de la physique des particules, et une mesure pré-
cise de cette fraction d’embranchement offre une opportunité unique de sonder des contributions
au-delà du Modèle Standard. La limite supérieure attendue sur la fraction d’embranchement
de B+ → K+νν̄ est déterminée à 0.987 × 10−5 avec un niveau de confiance de 90%, à partir
d’événements simulés.
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Introduction

The Standard Model (SM) stands as the cornerstone of modern particle physics, offering a re-
markably successful framework for understanding the fundamental building blocks of the universe
and their interactions. Over decades of experimental scrutiny, the SM has consistently proven
its worth by accurately predicting and explaining numerous phenomena observed in particle col-
lisions. However, beneath its impressive veneer lie intriguing puzzles and unresolved mysteries
that continue to challenge our understanding.

One such enigma is the matter-antimatter asymmetry, a profound imbalance in the universe’s
composition that remains unexplained within the confines of the SM. This asymmetry, intricately
linked to the magnitude of CP violation in the quark sector, underscores the need for a deeper
understanding of fundamental particle interactions [1].

Therefore, motivations to extend the SM in order to address those questions are plentiful. In
addition to the direct methods of searching for new physics, indirect searches can be performed,
which consist in probing beyond-the-standard-model (BSM) physics by parameterizing the effect
of new, unknown phenomena using effective theories.

The most important indirect constraints come from flavor physics observables and elec-
troweak precision tests [2]. Flavor-changing-neutral-currents (FCNC) are excellent probes for
BSM physics. FCNC processes are a class of particle interactions where a quark changes flavor
without altering its electric charge. In the SM, FCNC processes occur only at higher orders in
perturbation theory, making them highly suppressed. This suppression arises from the struc-
ture of the CKM (Cabibbo-Kobayashi-Maskawa) matrix, which governs the transitions between
different quark flavors. The CKM matrix encodes the strength of flavor-changing transitions
and introduces a hierarchy of suppression factors, leading to rare FCNC interactions within the
SM [3].

Due to their rarity within the SM, FCNC processes are sensitive probes for physics beyond
the Standard Model. The presence of new particles, such as those predicted by theories like
supersymmetry or models addressing the hierarchy problem, can enhance FCNC’s branching
fractions. Therefore, studying FCNC processes provides valuable insights into the underlying
structure of particle interactions and can help identify signatures of new physics.

Experimental investigations of FCNC processes, particularly in rare B meson decays, offer a
rich testing ground for exploring deviations from SM predictions. These rare decays involve the
transformation of B mesons, which contain bottom quarks, into final states involving different
quark flavors. By precisely measuring the rates and kinematic distributions of these decays,
physicists can test the predictions of the SM and search for deviations that may signal the
presence of new particles or interactions beyond the SM [4].

The particular channel of interest in this work is the B+ → K+νν̄ decay. This mode is
theoretically very clean due to the absence of virtual photons, resulting in a well-predicted
branching fraction, so any deviation from that value would be a clear sign of BSM physics.
However, studying this decay mode presents two main challenges. Firstly, it is extremely rare,
meaning that the sensitivity and uncertainty of measurements are heavily influenced by the size
of the data sample. Secondly, the final state involves two neutrinos, making the process almost
invisible.

The BELLE II experiment [5] provides an ideal environment for studying rare decays like
B+ → K+νν̄. With its world-record luminosity and highly sensitive detectors, BELLE II of-
fers the opportunity to explore this rare process with unprecedented precision. BELLE II’s
capabilities synergize with the Hadronic Tag Analysis (HTA) and Inclusive Tag Analysis (ITA)
approaches, which rigorously reconstruct signal B mesons and validate each other’s results. This
work introduces a new approch to study the decay using the Graph-based Full Event Inter-
pretation (graFEI) framework. This method uses information from the final state particles to
understand the underlying decay structure.
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1 Context

1.1 Belle II Experiment

Belle II is a particle physics experiment collecting data at the SuperKEKB collider. This collider
accelerates positrons to 4 GeV and electrons to 7 GeV. As a lepton-lepton collider, it avoids
the pile-up and event-induced background issues seen in hadron colliders. The collider achieves
a center-of-mass energy of 10.58 GeV, corresponding to the Υ(4S) meson, a bound state of bb̄
quarks. This meson typically decays into B+B− or B0B̄0. Belle II provides a clean environment
ideal for studying partially invisible B decays. Due to the asymmetric acceleration of the two
leptons, the produced B mesons are boosted forward in the direction of the higher energy beam.

One key feature of Belle II is its hermeticity, which is crucial for invisible particles like
neutrinos, because it allows to reconstruct the Rest-of-Event (ROE) and hence, constrain their
kinematics. This is managed by a series of sub-detectors, arranged from the nearest to the
collision point to the furthest: the Vertex Detector (VXD), composed of the Silicon Vertex
Detector (SVD) and Silicon PiXel Detector (PXD); the Central Drift Chamber (CDC); the
Time Of Propagation counter (TOP) and Aerogel Ring Imaging CHerenkov (ARICH) for particle
identification; the Electromagnetic CaLorimeter (ECL); and finally the K0

L and Muon detector
(KLM). The arrangement of these detectors is illustrated in Figure 1.

Figure 1: The Belle II detector[6].

1.2 B+ → K+νν̄

As outlined earlier, the detection challenge of this decay channel stems primarily from the pres-
ence of two neutrinos, which are undetected by Belle II. This decay does not occur at tree level
in the SM and only proceeds via loop processes, as shown in Fig 2. As such, it is stringently
suppressed by the Glashow-Illiopoulos-Maiani (GIM) mechanism, a fundamental aspect of the
SM that prohibits certain flavor-changing processes at leading order.

Furthermore, the absence of charge in neutrinos and their inability to couple to photons
makes this decay cleaner compared to similar ones involving charged leptons, such as B →
Kl+l−. Indeed, the inclusion of photon interactions in the latter process increases the theoretical
uncertainties. This distinction underscores the unique characteristics of B+ → K+νν̄ and its
potential significance in BSM physics research [7].

Therefore, the deviations from the Standard Model (SM) predictions can be quantified by
introducing the signal strength, which is defined as the ratio of the measured branching fraction
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of B+ → K+νν̄ and the value predicted in the SM:

µ =
B(B+ → K+νν̄)

B(B+ → K+νν̄)SM
(1)

where B(B+ → K+νν̄)SM = 5.56 × 10−6 from Ref [8] is known with a relative uncertainty of
8%, which includes a contribution from loop diagrams of about 4.97 × 10−6, and a 0.61 × 10−6

contribution from long-distance double-charged-current B+ → τ+(→ K+ν̄)ν decay. The SM
expectation for the B+ → K+νν̄) branching fraction used as a reference is the one from the loop
contributions, and the contribution from τ decays is excluded.

Figure 2: Leading orders of the B+ → K+νν̄ decay in the SM.

1.3 Recoil B-meson reconstruction

B-meson decays involving one or more neutrinos typically provide limited or no kinematic con-
straints, which are crucial for distinguishing these events from the main backgrounds [9]:

• Continum backgrounds: e+e− → qq̄, where q ∈ u, d, s, c

• On-resonanace backgrounds1: B+B− and B0B̄0, referred to as charged and mixed back-
grounds.

The measurement of rare signal decays such as B− → K−νν, which include invisible particles
like neutrinos, presents significant challenges due to their lack of detectable signatures in the
detector. As a result, information about the full B meson decays is incomplete. To address
this, the decay of the counterpart B meson (the tag-side) in the Υ(4S) → B+B− event is
reconstructed, as depicted in Fig 3. This approach, known as recoil B-meson reconstruction,
leverages the full event information by combining observations from both the signal and tag
sides of the Υ(4S) decay to enhance the robustness of the analyses.

1The Υ(4S) resonance
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Figure 3: An electron-positron (e−-e+) collision initiates a Υ(4S)-event, which subsequently
decays into two B-mesons, delineated as the signal-side (right) and tag-side (left) B-decays. The
process is illustrated through the decay chains, capturing both intermediate and stable particles
involved in the transitions.[10].

The rapid decay of B mesons into a multitude of channels, coupled with the fact that only
stable final state particles (FSPs) such as electrons, muons, kaons, pions, and photons can be
detected, further complicates the reconstruction process. These stable particles are crucial for
reconstructing the decay sequence and inferring the properties of the invisible components of the
decay. By meticulously analyzing the detected FSPs and reconstructing the decay chain, the
missing information can be peiced together and the understanding of the underlying physical
processes can be significantly improved.

1.4 Belle II measurements of B+ → K+νν̄

At the Belle II experiment two complementary methods were employed to analyze the decay
B+ → K+νν̄ using 362fb−1 data collected in the period 2019-2022. The first approach, called
Inclusive Tag Analysis (ITA) [11], reconstructs only the signal B meson and uses the rest of
the event (ROE) to constrain the kinematics, and imposes a tagging efficiency of almost 100%,
but with a low signal purity. The second method, known as Hadronic Tag Analysis (HTA)
[12], follows a more conventional path to validate the ITA method, but imposes a lower tagging
efficiency.

The branching fractions of the B+ → K+νν̄ found by the HTA and ITA are, respectively,
[1.1+0.9

−0.8(stat)+0.8
−0.5 (syst)] ×10−5 and [2.7 ± 0.5((stat) ± 0.5(syst)] × 10−5. The HTA approach

allows an the high purity but low tagging efficiency while the ITA has an high tagging efficiency
but low purity. A new tagging strategy with at the same time a high efficiency and a high purity
is sought for. This objective will be addressed through the implementation of the Graph-tagged
Analysis (GTA), which is performed via the graFEI.
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Figure 4: Twice the negative profile log-likelihood ratio as a function of the signal strength µ for
the ITA, HTA, and the combined result [13].

2 Methods

2.1 The Graph-based Full Event Interpretation Model (graFEI)

The Graph-based Full Event Interpretation (graFEI) is a machine learning model devised to
inclusively reconstruct events at Belle II by solely utilizing information on the final state particles,
without presupposing any underlying decay chain structure [14].
This is efficiently accomplished using graph neural networks (GNNs), a specialized class of neural
networks designed to operate on graph data structures. Graphs, denoted as G, consist of nodes
V = {vi}Ni=1 and edges E = {eij |i ̸= j}, which connect these nodes.
In graFEI, each event is conceptualized as a graph where nodes represent detected particles and
edges denote potential interactions or relationships between these particles.

Decay trees are represented as rooted directed acyclic graph structures. The adjacency
matrix A is one method to algebraically represent graphs, where elements of A indicate the
presence of an edge between nodes, reflecting the direct connections within the decay tree.
However, since only final state particles are detectable in particle physics experiments, the
number of intermediate particles is unknown, making the direct reconstruction of A impossible.
This challenge is addressed by employing the Lowest Common Ancestor (LCA) matrix, adapted
for particle physics as the LCAS matrix, where ’S’ stands for "stage" [15] [10]. The LCAS
matrix elements identify the nearest common ancestor shared by any two particles, facilitating
the reconstruction of the decay sequence from only the final state particles.
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Figure 5: Example of a reconstructed decay tree with the corresponding LCAS matrix, demon-
strating how the matrix encodes relationships between final state particles.

The LCAS matrix offers a streamlined and interpretable framework to represent complex
particle interactions and decay processes. It enables the GNN to learn and predict the masses
of final state particles and their relationships, structured within the LCAS matrix. As shown in
Figure 5, each ancestor is identified in the LCAS matrix: 6 for Υ(4S), 5 for B±, 4 for D∗, 3 for
D±,0, 2 for K0

s and 1 for π0. The processing steps include:

• The input graph is a fully-connected one, meaning each final state particle share an edge
with all the others. nodes contain particle information (particle charge, pT, dr, dz,
electronID, protonID, muonID, kaonID, while edges containg information related to
pairs of particles (the angle between particles’ momenta (cos θ), the distance of closest
approach between two tracks (DOCA)).

• The graph is passed through the network, where dedicated neural networks update the
node and edge features

• The output graph is a fully connected graph with same structure as the input one but
updated features. The output features are used to predict the LCAS elements and the
mass hypotheses of final state particles.

2.2 Binary classification

2.2.1 Gradient-boosted decision tree

Single decision trees [16] are widely used in machine learning for their simplicity and inter-
pretability. They work by recursively splitting the dataset based on feature values to create a
tree-like model of decisions, which are in this case, the event being a signal or a background.
However, single decision trees often suffer from high variance, leading to overfitting, or high bias,
leading to underfitting. These limitations make them less robust and less accurate on complex
datasets.

Boosted Decision Trees (BDTs) address these issues by forming an ensemble of multiple
decision trees, each contributing to the final prediction. Unlike single decision trees, BDTs
iteratively correct the errors of the previous trees, thereby improving overall classification and
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regression performance. This ensemble method reduces both variance and bias, resulting in
better generalization on unseen data.

For a given observation x ∈ RNv and a set of Nt decision trees, each tree assigns a weight
wi(x) ∈ R to x. The weights from all trees in the ensemble are summed to define a global weight
W (x):

W (x) =

Nt∑
i=1

wi(x), (2)

with an associated global prediction probability ŷg given by:

ŷg = P (W (x)) =
1

1 + e−W (x)
(3)

2.2.2 Feature Importance

Feature importance is a crucial aspect of model interpretability in gradient-boosted decision
trees. It quantifies the contribution of each feature to the predictive performance of the model.
One common method to measure feature importance is by calculating the gain, which is the
improvement in accuracy brought by a feature to the branches it is involved in.

The importance of a given variable v can then be defined as the sum of the gains across all
nodes featuring v, normalized by the total gain:

I(v) =

∑
i∈S0

Gain(i)∑
j∈S Gain(j)

, (4)

where I(v) is the relative importance of v, S0 is the set of nodes featuring v, and S is the set
of all nodes present in the tree.

This measure of feature importance allows practitioners to identify and focus on the most
significant features in their data, leading to more efficient and interpretable predictions.

2.3 Statistical Methods

To estimate the signal sensitivity µ, defined in equation 2.1, a binned maximum-likelihood fit is
implemented. For a set of Nb bins, where events are counted after a given selection, the expected
number of events fb(µ, θ) in each bin is estimated from simulations for each type of contribution,
including one signal sample and n ≥ 1 background sources:

fb(µ, θ) =
∑

t∈{event types}

fb,t(µ, θ) (5)

where fb,t is the expected number of events in bin b for the event category sample t, and θ is a
vector of N nuisance parameters that impact the base expectations.

It is assumed that, with n ≥ 1 background sources, θ contains n nuisance parameters
µ1, . . . , µn, and N − n additional nuisance parameters such that:

θ = (µ1, . . . , µn, θN−n, . . . , θN )T (6)

The normalization parameters µi, i ∈ {1, . . . , n}, are voluntarily named similarly to the signal
strength µ, as each µi corresponds to a given background strength.

The likelihood of the observation of n1, . . . , nNb
data events in these bins is modeled as:

L(µ, θ|n1, . . . , nNb
) =

1

Z

∏
b∈{bins}

e−fb(µ,θ)(fb(µ, θ))
nb

nb!
p(θ) (7)

9



where Z is a normalization factor, e−fb(µ,θ)(fb(µ,θ))
nb

nb!
represents the Poisson probability of observ-

ing nb events given the expected fb(µ, θ), and p(θ) is the prior probability given to the different
nuisance parameters.

The prior probability p(θ) is composed of several Gaussian densities, centered at unity for
normalization variations and at zero for additive variations:

p(θ) =
n∏

i=1

Gauss(θi|1, σ2
norm,i)

N∏
j=N−n+1

Gauss(θj |0, 1) (8)

The background normalization uncertainties σnorm,i and the factors δb,ti are inputs to the model,
describing the systematic uncertainties.

Finally, µ is extracted from the MC events by the maximization of the likelihood function
L(µ, θ|n1, . . . , nNb

).

2.3.1 Upper Limit Determination

Assuming a specified value of µ, the likelihood ratio, λ(µ), is defined by the following equation:

λ(µ) =
L(µ,

ˆ̂
θ|n1, . . . , nNb

)

L(µ̂, θ̂|n1, . . . , nNb
)

(9)

where µ represents the signal strength and θ are the nuisance parameters. The parameters (µ̂, θ̂)
are those that maximize the likelihood across the observed data set, and ˆ̂

θ are the parameters
that maximize the likelihood for a fixed µ.

The likelihood ratio test statistic, Λµ, is then given by:

Λµ = −2 lnλ(µ), (10)

where Λµ corresponds to the square of the sensitivity. The factor of −2 is introduced to scale
the logarithmic likelihood ratio, ensuring that under the null hypothesis, the test statistic Λµ

follows a chi-squared distribution, as per Wilks’ Theorem [17]. This transformation allows for
using the chi-squared distribution to determine statistical significance, facilitating comparisons
of the observed data against expected distributions under the null hypothesis.

An upper limit on µ at a specified confidence level (CL) is determined by finding the µ value
that satisfies the following condition:

Λµ = χ2
CDF−1(C), (11)

where C represents the required confidence level, and χ2
CDF−1 is the inverse cumulative distribu-

tion function of the chi-squared distribution.
Assuming that the value of µ that satisfies the equation above is µ∗, the upper limit is

expressed as:
B(B+ → K+νν̄) < 4.49× 10−6 × µ∗ (12)

The binned maximum likelihood fitting and the determination of the upper limit are con-
ducted using the pyhf package [18].

3 Results

3.1 Input Simulated Samples

Simulated B+ → K+νν̄ signal and background samples are generated in Belle II reflecting
data-taking:
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• 98.7× 106 events of the signal B+ → K+νν̄.

• 211.7× 106 continuum background corresponding to 1444 fb−1 of luminosity.

• 28.2 × 106 BB̄ background of mixed and charged events, corresponding to 1444 fb−1 of
luminosity.

3.2 Events variables

The signal is normalized to the SM branching fraction, while the backgrounds are normalized to
the BELLE II luminosity of 362 fb−1. Some of the event variables used in this analysis are as
follows:

• kinematics:

– The difference between the energy of the tagged side and half the center of mass
energy

– Cosine the angle in Center-of Mass (CMS) frame between momentum the particle and
the tag-side B .

(a) (b)

• Event shape variables: Such as the modified Fox-Wolfram moments, which describe how
compatible the event topology is with each of the spherical harmonics [19].
The signal-ROE (so) modified Fox-Wolfram moment of degree l for the a particle is

Hs0
xl =

1

Z

Ns∑
i=1

Nx∑
jx=1

C l
ijxpjxPl(cosαijx) (13)

– Z, a normalization factor, verifying Z = 2(
√
s−E∗

B), where
√
s is the available energy

in the center-of-mass frame and E∗
B is the energy of the signal B-meson candidate in

the center-of-mass frame.

– Cijx
l ∈ {−1, 0, 1}, the product of the charges for the candidates i and jx if l is odd;

Cijx
l = 1 if l is even.

– Pl, the Legendre polynomial of l-th order.

– αijx, the angle between the momenta pi and pjx.
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(a) (b)

(c) (d)

Figure 7

others:

• The mass squared of the neutrino pair.

• The number of extra tracks in the event.

(a) (b)

The full set of the variables used in the analysis, their descriptions and distributions are listed
in Appendix A.

3.3 Event classification

3.3.1 GraFEI reconstruction requirement

The LCAS matrix is required to contain only the signal kaon and the tag B meson. The signal
reconstruction efficiency ϵReco is found to be 27.29% 2.

2Performed by the IPHC Belle II team
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3.3.2 Pre-training cuts

The pre-training cuts are applied on the most glaring backgrounds, in order to enable the sub-
sequent training to concentrate on rejecting more difficult backgrounds. These cuts are applied
on the two following variables:

• The likelihood of the signal-side final state particle being a kaon is > 0.9.

• The cosine of the angle between thrust axis (axis along which the projection of a collection
of momenta is maximized) if the signal B and the thrust axis of the Rest of Event (ROE)
< 0.9.

• The graFEI assigns a probability to each LCAS element that it predicts. The geometric
mean of all those probabilities is required to be > 0.2.

(a) (b)

Figure 9

The pre-training efficiency ϵPre-train is found to be 53.61%.

3.3.3 Classifier training

Events are classified according to their similarity to the expected signal using a BDT imple-
mented with XGBoost [20]. In order to achive a good performance, the variables with strong
correlations in both the signal and the backgrounds were removed from the input list, and the
BDT was trained with 16 variables. To further enhance the model performance, the hyperparam-
eters were optimized using RandomizedSearchCV, which is a method for hyperparameter tuning
that searches across a specified hyperparameter space by sampling a fixed number of parameter
settings from the specified distributions rather than trying all combinations. The optimiziation
was tested over the following ranges:

• max_depth: [3, 5]

• learning_rate:[0.01, 0.2]

• subsample: [0.6, 1.0]

• n_estimators: [200, 600]

The optimized values are listed in Table 1.

13



BDT parameter Value
Tree depth 5

Learning rate 0.1547
Number of estimators 600

Subsample Ratio 0.8912

Table 1: The optimized BDT hyperparameters

The BDT is trained using 10% of the input samples, further divided into 80% for training
and 20% for testing, then applied on the remaining 90% of the samples.
The tree reconstruction algorithm used in training is (tree_method = hist), which speeds up
gradient boosting by using histogram-based algorithms to compute the best split points. Instead
of scanning all possible split points, it discretizes feature values into bins and constructs his-
tograms to efficiently find the optimal splits, reducing computational overhead and enhancing
training speed.

(a) (b)

Figure 10: The matrix of linear correlation coefficents of the input variables to the BDT of the
signal (left) and the backgrounds (right)

After training, the importance of each feature in classifying events can be assessed. Feature
importance indicates the contribution of each feature to the model’s predictive performance.
Figure 11(a) illustrates the relative importance of features in the classification process.

Figure 12 showcases the BDT output distribution for both signal (S) and background (B)
events. The BDT classifier effectively discriminates between signal and background, as evidenced
by the separation between the two distributions across the BDT output range.

14



(a)
(b) Area Under the Curve (AUC) for the clas-
sifier parameters.

Figure 11

Figure 12: The classifier output of the agreement between the testing and training of the 90%
sample

3.4 Signal region search

The signal region (SR) is the region on which the binned-likelihood fit will be performed, in
order to get the value of B(B+ → K+νν̄). The region is achieved by applying a cut of BDT >
0.8. This region is then divided into 6 equal bins of the classifier probability output. In order
to easily treat the classifier output, it is modified so that the distribution of the B+ → K+νν̄
signal is uniform along the whole region (Fig 13), that is, for each event y, its BDT output a is
transformed as follows:

a →
∫ a
−1BDT (y) dy∫ 1
−1BDT (y) dy

(14)
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Figure 13: The flattened BDT output distributions for signal and background samples

Figure 14: Distribution of events in the signal search region for the GTA

3.5 Results and Discussion

3.5.1 Efficiencies

Selection Number of signals after the cut εsig ×%

graFEI event reconstruction 26940105 27.295± 0.005

Preselection cuts 14429334 53.607± 0.010

Signal Region 2671942 18.517± 0.010

Table 2: Signal selection efficiency at various steps of the selection

The total efficiency of the selection process is, therefore, the product of the following terms:

ϵTotal = ϵReco × ϵPre-train × ϵSelec = (2.709± 0.002)% (15)
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3.5.2 Signal upper limit

Based on the likelihood L(µ, θ), the expected upper limit on the value of B(B+ → K+νν̄) is
determined. Assuming the Standard Model (SM) value for B(B+ → K+νν̄), Figure 15 presents
the distribution of the likelihood-ratio test Λµ as defined in Equation 10. From this distribution,
the expected upper limit for the GTA is:

B(B+ → K+νν̄) < 0.987× 10−5 (16)

at a 90% confidence level. The asymmetrical error σAs associated with the signal strength
errors is:

σAs = σ+ − σ− = 0.025 (17)

where σ+ and σ− are the positive and negative errors, respectively:

σ+ = µ(2 lnΛ = 1)− µ(2 lnΛ = min)

σ− = µ(2 lnΛ = min)− µ(2 lnΛ = 1)

Figure 15: Twice the negative likelihood-ratio λµ, expecting a SM value for the B+ → K+νν̄
branching fraction.

3.5.3 Comparing with previous results

The expected upper limit on branching fraction is compared with previous measurements in
Figure 16 in both the SM prediction and the HTA and ITA combined central value central
value.
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Table 3: SM predictions, with µ = 1

µ at 90% CL Upper limit at 90% CL σ+ σ− σ+ − σ−

GTA 1.987 0.987× 10−5 0.768 0.743 0.025
HTA 2.676 1.329× 10−5 1.289 – –
ITA 1.766 0.878× 10−5 0.597 0.589 0.008

Figure 16

The branching fraction of the signal obtained with the (HTA + ITA) combined results is
2.3× 10−5, which corresponds to a signal strength of 4.6 3[13].

3Systematic uncertainties are not being considered at this stage of the analysis
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Figure 17

Table 4: HTA and ITA combined central value, µ = 4.6

µ at 90% CL Upper limit at 90% CL σ+ σ− σ+ − σ−

GTA 5.583 2.824× 10−5 0.843 0.822 0.021
HTA 6.605 3.282× 10−5 1.549 1.424 0.125
ITA 5.407 2.687× 10−5 0.629 0.623 0.006

The signal purity is defined as:

Psig =
The number of the final signal events

The number of the final background events

The signal purity and total efficiencies of the GTA, HTA and ITA at the SM prediction are
shown in Table 5:

Table 5

ϵTotal(%) Psig(%)

GTA 2.7 1.4
HTA 0.4 3.5
ITA 8 0.8

The GTA demonstrates superior performance in both total efficiency and signal purity com-
pared to both the HTA and the ITA, respectively. While the ITA shows a higher total efficiency
compared to the GTA, it does so at the expense of lower signal purity. These findings suggest
that the GTA offers a balanced approach in achieving robust testing outcomes, particularly when
considering both efficiency and signal integrity as critical metrics in the evaluation process.
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4 Conclusion

This study focuses on the search of the B+ → K+νν̄ decay using simulations corresponding to
a luminosity of 1443 fb−1, employing the graph-neural network approach, graFEI.

The analysis involves meticulous selection steps, including the application of Boosted Decision
Trees (BDTs) to mitigate backgrounds, and rigorous evaluation of selection efficiency at various
stages. The culmination of the study features a binned maximum likelihood fit on the BDT
classifier output, establishing an upper limit on the branching fraction of B(B+ → K+νν̄) <
0.987× 10−5 at a 90% confidence level (CL).

Importantly, this investigation highlights the comparative efficacy of different methodologies:
the graph-neural network approach (GTA), the Hadronic Tag Analysis (HTA), and Inclusive
Tag Approach (ITA). The GTA demonstrates superior performance in both total efficiency and
signal purity compared to HTA and ITA. This underscores the GTA’s capability to effectively
discern rare signal events amidst background noise, crucial for advancing our understanding of
rare decays in particle physics.

Looking ahead, ongoing refinement of selection techniques and meticulous consideration of
statistical and systematic uncertainties promise to enhance sensitivity and improve upper limits
in future analyses. These efforts are essential for pushing the boundaries of particle physics
research, aiming to uncover new physics phenomena and contribute to the ongoing evolution of
the Standard Model.
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A List of Variables

Variable Description
sumEp Missing energy of event in the CMS + missing momentum

of event in CMS
miss_theta Angle between missing momentum and z axis

Ups_cosTheta Angle between Upsilon total momentum and z axis
NEExtra_ROEClusters_v702 Total energy of neutral clusters in calorimeter in the rest-of-

event
cos_tag_miss_CMS Angle between Btag and missing momentum in CMS

delta_dz
phi_K_pmiss_CMS Angle between signal kaon and missing momentum in CM

frame

Table 6: Variable descriptions
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Figure 21
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B Selection Optimisation

The optimal BDT cut is evaluated by maximizing the Punzi Figure of Merit (FoM), defined as:

FoM =
εsig√

Nbkg + a/2
(18)

Where εsig and Nbkg are the signal efficiency and the background yields for a given BDT cut.
The parameter a is set to a = 5 for a statistical signal significance of 5σ. As shown in Fig 21,
the maximum of the FoM is found at 0.9, so the cut on the events is placed at this BDT value.
The BDT performance is quantified using the sensitivity (S) at 90% CL, defined as:

S =
1.28×

√
Nbkg

ϵs ×NB+

(19)

The factor of 1.28 arises from the upper limit of the interval [−∞, 1.28σ], which encompasses
90% of the area under a Gaussian distribution. The sensitivity pertains to estimating the limit
on the B+ → K+νν̄ branching fraction.

Figure 22: The dashed line corresponds to the optimal value

• Best BDT Cut: 0.90

• Estimation of the error: 27.92

• Number of Signal Events: 757886

• Signal Efficiency: 0.0023

• Upper Limit to 90% CL: 0.000085
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BDT Cut BG Events Signals Signal Efficiency

0.10 3198256 12886221 0.15
0.20 1924542 12605757 0.14
0.30 1227446 12102144 0.14
0.40 800815 11390872 0.13
0.50 512921 10504415 0.12
0.60 302979 9305582 0.10
0.70 148645 7587184 0.09
0.80 50657 5219835 0.06
0.90 779 757886 0.0023
0.91 314 482328 0.01
0.92 95 255088 0.00

Table 7: The number of signal events is not normalized

C Background-only hypothesis

Figure 23: Twice the negative likelihood-ratio λµ at µ = 0

Table 8: Background-only hypothesis, with µ = 0

µ at 90% CL Upper limit on B(B+ → K+νν̄) at 90% CL σ+

GTA 0.95 0.47× 10−5 0.74
HTA 1.55 0.77× 10−5 1.19
ITA 0.75 0.37× 10−5 0.59
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