# SemiLeptonic and Missing Energy B decays at Belle II

Giovanni Gaudino on behalf of Belle II collaboration ICNFP Kolymbari – 2024, 28<sup>th</sup> August







Scuola Superiore Meridionale



# Semileptonic B decays

### Motivations of Semileptonic B decays

Lepton–Flavor Universality tests

SM Precision Measurements

Electroweak Penquins

- In SM, the W boson couples equally to  $\tau, \mu, e \rightarrow$  Lepton–Flavor Universality (LFU)
- Semileptonic B decays are sensitive to new physics beyond SM
- Ratio measurements provide stringent LFU tests: branching fractions, angular asymmetry, etc.
  - ✓ Normalization  $(|V_{xb}|)$  cancels
  - ✓ Part of theoretical, experimental uncertainties cancels

$$R(H_{\tau/\ell}) = \frac{B(B \to H\tau\nu)}{B(B \to H\ell\nu)}$$
$$H = D^{(*)}, X, \pi, \dots$$
$$\ell = e, \mu$$

Tension of 
$$R\left(D_{\tau/\ell}^{(*)}\right)$$
 with SM ~3 $\sigma$ 

2024, 28<sup>th</sup> August



### Motivations of Semileptonic B decays



### Motivations of Semileptonic B decays

Lepton–Flavor Universality tests

SM Precision Measurements

**Electroweak Penguins** 

- Flavor-changing neutral currents are not possible at tree level in the Standard Model (SM)
- Branching fractions predicted in the range  $10^{-7}$ – $10^{-4}$  with 5–30% uncertainties (dominated by soft QCD effects).
- Highly sensitive to potential **non-SM contributions.**



# **Belle II and SuperKEKB**

# **Belle II and SuperKEKB**

#### SuperKEKB

- $e^+e^-$  collider with energies 4 GeV and 7 GeV operating around  $\Upsilon(4S)$ resonance.
- Achieved world-record peak Luminosity of  $L=4.7\times 10^{34} cm^{-2} s^{-1}$

#### Belle II

- Nearly  $4\pi$  detector coverage
- Tracking, PID and photon reconstruction capabilities
- Similar performance for electrons and muons
- Well–suited to measure decays with missing energy,  $\pi^0$  in the final state, inclusive measurement





# **SM Precision Measurements**

## $|V_{ub}|$ from $B^0 ightarrow \pi^- \ell^+ \nu$ and $B^+ ightarrow ho^0 \ell^+ u$

- Full Belle II Run1 dataset of 364 fb<sup>-1</sup>, untagged
- Non-resonant  $e^+e^-$  interactions and B background suppressed using BDTs
- Signal yields extracted from 2 kinematic variables in bins of  $q^2$  simultaneously for  $\pi l \nu$  and  $\rho l \nu$  mode  $\rightarrow (13 + 10) \times 4 \times 5$  bins

$$M_{bc}c^{2} = \sqrt{E_{beam}^{*2} - c^{2} \left| \overrightarrow{p_{B}^{*}} \right|^{2}}$$
$$\Delta E = E_{B}^{*} - E_{beam}^{*}$$



### $|V_{ub}|$ from $B^0 o \pi^- \ell^+ \nu$ and $B^+ o ho^0 \ell^+ \nu$



10

### Comparison with HFLAV averages



- Reducing the tension with  $|V_{ub}|$  inclusive
- Still large uncertainty

 $B^0 \rightarrow \pi^- l^+ \nu_l$ : (3.93 ± 0.19) × 10<sup>-3</sup> (3.73 ± 0.16) × 10<sup>-3</sup>

$$B^+ o 
ho^0 l^+ \nu_l$$
:  
(3.19 ± 0.33) × 10<sup>-3</sup>

arxiv:2407.17403

# Lepton Flavor Universality tests

## Measurement of $R(D^*_{\tau/\ell})$

- Dataset Luminosity: L = 189/fb
- Hadronic decay of the  $B_{tag}$ .
- Reconstruct  $\tau$  and light lepton decays into the same final state particles to cancel many systematic uncertainties.
- Reconstruct the  $D^*$  in the following channels:  $D^* \to D^0 \pi / D \pi^0 D^{*0} \to D^0 \pi^0$ .
- Rest of the event: no good quality tracks, no  $\pi^0$  candidates. The sum of all the neutral extra clusters energy is called  $E_{ECL}$ .
- The main challenges are the separation between the  $\tau(3\nu)$  and  $\ell(1\nu)$  final states and the poorly understood  $B \rightarrow D^{**}\ell\nu$  backgrounds.



$$R(D^*_{\tau/\ell}) = \frac{B(B \to D^* \tau \nu)}{B(B \to D^* \ell \nu)}$$

Giovanni Gaudino

#### 2024, 28<sup>th</sup> August

### Signal extraction

#### Two-dimensional binned likelihood fit to

•  $E_{ECL}$ : energy from neutral clusters remaining in the calorimeter after removing all reconstructed particles

• 
$$M_{\rm miss}^2 = (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_\ell)^2$$
 missing mass of the event





2024, 28<sup>th</sup> August

Giovanni Gaudino

### Results

#### Belle II preliminary result $R(D^*_{\tau/\ell}) = 0.262^{+0.041}_{-0.039}(stat)^{+0.035}_{-0.032}(sys)$

- Main systematics: MC statistics, shape of  $E_{ECL}$
- Consistent with SM and HFLAV
- Previous version presented at Lepton Photon 2023
- Minor updates applied

#### In the future:

- Update of the measurement with 364/fb in progress
- Belle II will provide the most precise experimental information to resolve the R(D) and  $R(D^*)$  anomalies [Snowmass White Paper: 2207.06307]



2024, 28<sup>th</sup> August

Giovanni Gaudino

# Electroweak Penguins

## Measurement of $B^+ \to K^+ \nu \overline{\nu}$

- Dataset Luminosity: L = 362/fb
- The final analysis is the combination of 2 measurements:
  - 1. ITA: Innovative Method, more sensitive.
  - **2. HTA:** Hadronic Tag Analysis (Conventional way, cross check for the inclusive analysis)

Focus on the Inclusive Tag: Two consecutive classifiers with signal kaon (the one with the lowest  $q^2$ ), event shape and Rest of Event information

Final observables:  $q_{rec}^2$  in bins of the second classifier (BDT)

$$q^2 = \frac{s}{4c^4} + M_K^2 - \frac{\sqrt{s}E_K^*}{c^4}$$

**ITA:** Inclusive Tag Analysis (Untagged analysis) 2024, 28<sup>th</sup> August



## **Control Sample studies**





### Evidence for $B^+ \to K^+ \nu \overline{\nu}$



### Conclusions

**Belle II at SuperKEKB**: rich and diversified physics program to probe new physics in an indirect way

Few highlights presented today, using full or partial dataset

- First evidence of  $B^+ \to K^+ \nu \overline{\nu}$ , 2.7 $\sigma$  above the SM prediction
- New Exclusive  $|V_{ub}|$  measurement from untagged  $B \to \pi/\rho\ell\nu$
- New measurement of  $R(D^*_{\tau/\ell})$

More and more results to discuss (2 other important results in the backup)

More and more data to analyze



#### Belle II General Meeting, KEK, June 2024

2024, 28<sup>th</sup> August



# **Thanks for the attention** and for the wonderful location!



Images and colors from visitgreece.gr



## Measurement of $R(X_{\tau/\ell})$



$$R(X_{\tau/\ell}) = \frac{B(B \to X\tau\nu)}{B(B \to X\ell\nu)}$$

- Dataset Luminosity: L = 189/fb
- Hadronic decay of the  $B_{tag}$ .
- Reconstruct  $\tau$  and light lepton decays into the same final state particles to cancel many systematic uncertainties.  $p_e$  > 0.3 (0.5) GeV and  $p_\mu$  > 0.4 (0.7) GeV in CMS (lab)
- The remaining particles on the signal side are collectively referred to as  $\boldsymbol{X}$
- Main challenge: correct model of backgrounds.

### **Data driven MC Corrections and Fit**

#### MC corrections:

- Detailed adjustments to MC (FFs, B and D BFs)
- Detailed corrections based on comparisons of simulation with control regions: low  $q^2$ , low  $M_{miss}^2$ , high  $M_X$ .

#### Final Fit:

- 34 bins in  $p_\ell$  vs  $M_{miss}^2$
- Fit components:  $X\tau\nu$ ,  $X\ell\nu$ ,  $B\overline{B}$  background (fakes and secondaries) and continuum (off resonance data<sup>\*</sup>)

\*Off resonance data: data taken under 60 MeV the Y(4S) threshold

2024, 28<sup>th</sup> August



### **Data driven MC Corrections and Fit**



Backup

### Results

Belle II preliminary result  $R(X_{\tau/\ell}) = 0.228 \pm 0.016(stat) \pm 0.036(sys)$ 

dominated by gap modes branching fraction,  $B \rightarrow D^*$  form factors, background shape

- Largest systematics: signal and background model
- Consistent with previous measurements from LEP, the SM expectation and constraints from  $R(D^*)$ . Rough SM expectation:  $R(X_{\tau/\ell}) \approx$ 0.223 [JHEP11(2022)007]



## Measurement of $B^0 o K^{*0} au^+ au^-$

- Dataset Luminosity: L = 364/fb
- Hadronic Tag Analysis

#### Challenges

- Low Branching Fraction:  $BR_{SM} = (0.98 \pm 0.10) \times 10^{-7}$  [PRD 53, 4964 (1996)]
- No signal peaking kinematic observable
- Large backgrounds+more than 3 prompt track
- Up to 4 neutrinos orignating from the 2 au
- $K^{*0}$  has low momentum due to the phase space

Status of the Art: Belle (L = 711 / fb):  $BR < 3.1 \times 10^{-3}$  at 90% CL [PRD 108 L011102 (2023)]



## **Strategy and Results**

- Combinations of sub-track from  $\tau$  lead to 4 categories:  $\ell\ell, \ell\pi, \pi\pi, \rho X$
- **BDT** is trained using missing energy, extra cluster energy in EM calorimeter,  $q^2$ , etc.
- BDT output  $\eta(BDT)$  is used to extract the signal yield with simultaneous fit to 4 categories



#### Validation:

- Total efficiency and Peaking  $B\overline{B}: B^0 \to K^{*0}J/\psi$  sample, replace  $K^{*0}J/\psi$  with  $K^{*0}\tau^+\tau^-$  (14% uncertainty)
- Non-peaking  $B\overline{B}$  : sample with  $B_{sig}$  and  $B_{tag}$  and having same flavor
- $q\overline{q}$  background is scaled by off-resonance data

Belle II Preliminary Result  $BR < 1.8 \times 10^{-3}$  at 90% CL

**Twice better with only half sample wrt Belle!** Better tagging + more categories + BDT classifer

# Missing Energy decays at Belle II

Backup

### **Reconstruction tecnique**

Two different algorithms to reconstruct events with at least one neutrino in the final state

#### Full Event Interpretation (FEI):

 $B_{\rm tag}^-$ 

- 1. Reconstruct all the decay chain of a *B* meson (both hadronic and semileptonic ways)
- 2. Search for the signal signature in the  $B_{tag}$  recoil

 $B_{\rm sig}^+$ 

#### Inclusive Tag or Untagged:

- 1. Reconstruct the signal signature, identifying the  $B_{sig}$
- 2. All the remaining tracks and clusters represent the  $B_{tag}$

 $B_{\rm sig}^+$ 

2024, 28<sup>th</sup> August

 $D^0_{\boldsymbol{k}}$ 

Giovanni Gaudino

Efficiency

Puritu

### **Reconstruction tecnique**

Two different algorithms to reconstruct events with at least one neutrino in the final state

#### Full Event Interpretation (FEI):

- Reconstruct all the decay chain of a *B* meson (both hadronic and semileptonic ways)
- 2. Search for the signal signature in the  $B_{tag}$  recoil

 $B_{\rm sig}^+$ 

#### Inclusive Tag or Untagged:

- 1. Reconstruct the signal signature, identifying the  $B_{sig}$
- 2. All the remaining tracks and clusters represent the  $B_{tag}$

2024, 28<sup>th</sup> August

Efficiency

Purity

### **Control Samples Background Validation**

The final result is extracted using a MonteCarlo template fit. To validate/correct the shape and the normalization three different control samples:



2024, 28<sup>th</sup> August

Giovanni Gaudino