XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

Recent measurements of τ lepton decays at Belle II

 $\frac{\text{Arthur Thaller on behalf of Belle II}}{28/08/2024}$

Aix Marseille Univ, CNRS/IN2P3, CPPM

The Belle II experiment : SuperKEKB accelerator

The SuperKEKB e^+e^- collider at 10.58 ${\rm GeV}$:

- Upgrade from KEKB, 30-fold increase in luminosity
 - Nano-beam scheme and higher currents
- Record instantaneous luminosity $4.7 \times 10^{34} \, cm^{-2} \, s^{-1}$
- Currently ~ 530 fb⁻¹ recorded
 - Run 1 : 424 fb⁻¹(363 @ Υ (4S) + 61 off-resonance)
- Targeting 50 ab⁻¹

Belle II : a multi-purpose experiment

Belle II au physics program

 τ decay modes

Working with τ 's

 $\begin{aligned} \tau & \text{are produced in pairs in the } e^+e^- \to \tau^+\tau^- \text{ collisions, } \underline{\text{back-to-back and boosted }} \\ \to & \text{We exploit this geometrical separation : define two hemispheres with the thrust axis} \\ T &= \max_{\mathbf{\hat{t}}} \left(\frac{\sum_i |\mathbf{p}^*_i \cdot \mathbf{\hat{t}}|}{\sum_i |\mathbf{p}^*_i|} \right) \end{aligned}$

Reconstruct different topologies : 1x1, 3x1 or even untagged !

Test of Lepton Flavour Universality

Lepton Flavour Universality (LFU) is a property of the SM : the W gauge bosons are blind to the flavour of the lepton they interact with !

 $\tau \rightarrow \ell \nu \bar{\nu}$ only through charged current \rightarrow The <u>only difference</u> in the rates comes from <u>the mass of</u> <u>the leptons</u>:

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau})}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau})}$$

 $(R^{SM}_{\mu} = 0.9726)$

And the ratio of the coupling is exactly 1 (in the SM) :

$$\left|\frac{g_{\mu}}{g_e}\right|_{\tau} = \sqrt{R_{\mu}\frac{f(m_e^2/m_{\tau}^2)}{f(m_{\mu}^2/m_{\tau}^2)}}$$

 $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$

Deviation might indicate BSM physics contribution from new weak currents (charged and neutral)

| LFU test |

Event selection using the 1x1 topology : taa side sianal side e-/µ **Belle II** simulation $(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)(\tau^+ \rightarrow h^+ n \pi^0 \bar{\nu}_\tau)$ 106 $(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau)(\tau^+ \rightarrow h^+ n \pi^0 \bar{\nu}_\tau)$ Arbitrary units $(\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau)(\tau^+ \rightarrow \text{other})$ --- $(\tau^- \rightarrow \text{other})(\tau^+ \rightarrow h^+ n \pi^0 \bar{\nu}_\tau)$ 104 $--- e^+e^-(y)$ ---- Others 100 0.2 0.4 0.8 0.0 0.6 1.0 Output of the neural network

 $\begin{array}{l} \underline{\text{Signal side}} \text{ is either } \tau^- \to e^-_{ \overline{\nu}^e} \nu_{\tau} \text{ or } \tau^- \to \mu^-_{ \overline{\nu}^\mu} \nu_{\tau} \text{ (identified with PID variables)} \end{array}$

<u>Tag side is</u> $\tau^- \rightarrow \pi^- \nu_{\tau} + n\pi^0$: only one charged particle (E_{ECL}/p < 0.8) with 1 or 2 π^0

Leptons restricted to :

- 1.5 GeV/c $< p_{\ell} < 5.0~{\rm GeV/c}$
- 47° < θ_{ℓ} < 122° (polar angle w.r.t to the beam axis) to reduce PID systematics

Background rejection performed with a **set of selection criteria** and a **neural network :** total visible energy of the event, transverse missing momentum, tag-side kinematics...

94 % purity and 9.6 % signal efficiency

Remaining backgrounds : $e^+e^- \rightarrow \tau^+\tau^-$ with π^{\pm} mis-id as ℓ^{\pm} or wrong tag

LFU : systematics

The measurement is systematically limited

- and dominated by PID uncertainty
 - Efficiency measured with $J/\psi \rightarrow \ell^+\ell^-, e^+e^- \rightarrow e^+e^-\ell^+\ell^- \text{ and } e^+e^- \rightarrow \ell^+\ell^-(\gamma)$
 - $\rightarrow 99.7\%$ and 93.9% efficiency for electrons and muons
 - Fake rate measured with $K^0_S \rightarrow \pi^+ \pi^-$ and $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{\mp} \pi^{\pm} \nu_{\tau}$ 0.9% and 3.1% of mis-ID rate for electrons and muons
- Mis-modelling of trigger, evaluated with independent trigger selections

Source	Uncertainty [%]
Charged-particle identification:	0.32
Electron identification	0.22
Muon misidentification	0.19
Electron misidentification	0.12
Muon identification	0.05
Imperfections of the simulation:	0.14
Modelling of FSR	0.08
Normalisation of individual processes	0.07
Modelling of the momentum distribution	0.06
Tag side modelling	0.05
π^0 efficiency	0.02
Particle decay-in-flight	0.02
Tracking efficiency	0.01
Modelling of ISR	0.01
Photon efficiency	< 0.01
Photon energy	< 0.01
Detector misalignment	< 0.01
Momentum correction	< 0.01
Trigger	0.10
Size of the simulated samples	0.06
Luminosity	0.01
Total	0.37

$LFU: R_{\mu}$ extraction and result

- R_{μ} is extracted with a binned maximum likelihood fit
- 21 bins of lepton momentum
- 3 templates (one for the signal, two for the background)

LFV : search for $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$

- Charged Lepton Flavour Violation (cLFV) in the Standard Model through weak charged current and neutrino oscillations @ rates $\sim 10^{-55}$

 \rightarrow Clear prediction : <u>no LFV in current experiments</u> !

- Various BSM models predict LFV at observable rates $\sim 10^{-8}-10^{-10}$

(e.g leptoquarks for $\tau \rightarrow \ell \phi$, related to anomalies in $b \rightarrow c \tau \nu$)

Physics Models	$\mathcal{B}(au o \mu \mu \mu)$
SM	$10^{-53} \sim 10^{-55}$
SM + seesaw	10 ⁻¹⁰
SUSY + Higgs	10 ⁻⁸
SUSY + SO(10)	10 ⁻¹⁰
Non-universal Z'	10 ⁻⁸

A lot of interest in LFV decays at $e^+e^$ colliders, with ~ 50 modes : $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell \phi, \tau \rightarrow \ell \ell \ell$, etc.

These are rare decays : it's all about **maximizing** the number of events !

LFV : search for $\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$

$\tau^{\pm}\!\rightarrow\!\mu^{\pm}\,\mu^{\mp}\,\mu^{\pm}\!:$

- Almost free from SM background
- Very good resolution on the energy and momentum
- Can also be probed by LHC experiments

Existing measurements : 2.1×10^{-8} by Belle (Phys.Lett.B687) 2.9×10^{-8} by CMS (Phys.Lett.B853)

Untagged event selection :

- We reconstruct signal candidate by combining three muons
- No explicit reconstruction of the other τ : everything that is not the signal candidate is combined in an unique object called Rest Of Event (ROE)
- Allows to target all the 1 and 3 prong * decays of the other τ

*prong : # of charged particles

$\tau^{\pm} \rightarrow \mu^{\pm} \mu^{\mp} \mu^{\pm}$: background suppression

Background suppression - with a set of selection cuts to remove low multiplicity QED processes, mismodeled background

A **BDT classifier** with k-folding

to reject $e^+e^- \rightarrow q\bar{q}$

- Rest Of Event kinematics, signal candidate kinematics, missing momentum information....

$\tau^{\pm} \rightarrow \mu^{\pm} \, \mu^{\mp} \, \mu^{\pm} : \text{ results}$

- Signal yield is extract with a poisson counting experiment

- Signal region defined as $\frac{\text{an ellipse}}{\text{an ellipse}}$ in the 2D plane $(M_{3u}, \Delta E_{3u})$

$$\begin{split} (\Delta E_{3\mu} = E_{beam} / 2 - E_{3\mu}) \\ \mathcal{B}(\tau \to \ \mu \mu \mu) = \frac{N_{obs} - N_{exp}}{2\sigma_{\tau\bar{\tau}} \cdot \mathcal{L} \cdot \epsilon_{3\mu}} \end{split}$$

Number of expected background $N_{exp} = 0.7^{+0.6}_{-0.5} \pm 0.01$ obtained by rescaling the yields from the sidebands data in the signal region

Observed 1 event in the signal region

No excess is found

Summary of relative systematic uncertaintie			
		Uncertainty (%)	
Quantity	Source	Low	High
	PID	2.1	2.4
$arepsilon_{3\mu}$	Tracking	1.0	1.0
	Trigger	0.9	0.9
	BDT	1.5	1.5
	Signal region	3.9	2.9
N_{exp}	Momentum Scale	16	16
L		0.6	0.6
$\sigma_{ au au}$		0.3	0.3

Main uncertainty is statistical !

90 % CL upper limit on the branching fraction

 ${\cal B}$ ($au
ightarrow \mu \mu \mu$) $< \! 1.9 \! imes 10^{-8}$

World's best limit!

Accepted by JHEP (arXiv:2405.07386)

World's leading measurements of τ decays

- LFU is safe : $R_{\mu} = 0.9675 \pm 0.0007_{stat} \pm 0.0036_{sys}$ \rightarrow Accepted by JHEP, arXiv:2405.14625
- World's best limit : $\mathcal{B} (\tau \to \mu \mu \mu) < 1.9 \times 10^{-8}$

 \rightarrow Accepted by JHEP, arXiv:2405.07386

• Many more exciting results are coming : it's only the beginning for rare decay searches and precision measurements with τ 's at Belle II

Highway to $50 ab^{-1}$

$\tau^{\pm} \rightarrow \mu^{\pm} \, \mu^{\mp} \, \mu^{\pm} \, \text{expected background}^{\dagger}$

Bel	le w	ith 7	7821	fb ⁻¹
-----	------	-------	------	------------------

BUL	ε_{sig} (%)	N _{bkg}	Nobs
2.1×10^{-8}	7.6	0.13	0

$${f N}_{
m D} = {f N}_{
m C} * {f N}_{
m B} / {f N}_{
m A} = 0.7^{+0.6}_{-0.5}$$