

<u>Radiative and Electroweak Penguin</u> decays of B mesons at Belle and Belle II

Introduction of EWP

Flavor-changing-neutral-current (FCNC) occurs only by loop diagrams in the SM

- New physics (NP) appearing in the loop can change the variables like branching ratio, CP asymmetry, and isospin asymmetry
- Electroweak Penguin (EWP) is one of such loop diagrams
- $\succ \underline{FCNC \text{ of } B \text{ meson is relatively large thanks to } V_{\underline{tb}} \sim 1 \\ \rightarrow \underline{Highly \text{ sensitive to } NP}$
- > One of the main targets of B factory experiments

Introduction of Belle/Belle II

<u>B factory at KEK</u>

- > Quantum correlated $B\overline{B}$ pairs from Y(4S) decay
- World record luminosity
 - Belle II updated the peak record of Belle $(L_{inst.} = 4.7 \times 10^{34} / cm^2 / sec.)$
- Clean environment with small background
- Belle II is smoothly operating with many
 2024, upgrades from Belle
 S. Watanuki @PASCOS 2024

Topics

1. EWP process $B^+ \rightarrow K^+ \nu \bar{\nu}$ (Belle II)

2. Radiative $B \rightarrow K^*(892)\gamma$ (Belle II) NEW!

3. Radiative $B \rightarrow \rho \gamma$ (Belle + Belle II)

4. Double-radiative $B^0 \rightarrow \gamma \gamma$ (Belle + Belle II) NEW!

5. Time-dependent CPV of $B^0 \rightarrow K_S^0 \pi^0 \gamma$ (Belle II) NEW!

EWP process $B^+ \to K^+ \nu \overline{\nu}$

- Dominated by the loop diagrams
 - New particles can appear in the loop
 - e.g., Leptoquark, invisible (ALP, dark sector, etc.)
- ➤ Unlike $b \rightarrow s\ell^+\ell^-$, no photon exchange between the $\nu\bar{\nu}$
 - Theoretically clean
- 2 reconstruction methods with Belle II 362/fb:
 - 1. Inclusive-tag
 - 2. <u>Hadronic-tag</u>

5

Radiative $B \rightarrow K^*(892)\gamma$

Golden channel of EWP

- A_{CP} is sensitive to the $Im(C_7)$
- $\Delta A_{CP} \equiv A_{CP}^{K^{*0}\gamma} A_{CP}^{K^{*+}\gamma}$ is expected to provide a null test for SM
- Δ_{0+} was found to be non-zero in <u>Belle</u> (3.1 σ)

Study with Belle II 362/fb data

- All results are consistent with SM and the world averages
- BR precision is compatible with that in Belle, even though systematics dominated

€24/5/Q9 be submitted to JHEP

Preliminary results

• $\mathcal{B}(K^*\gamma) = (4.12 \pm 0.08 \pm 0.11) \times 10^{-5}$

Candidates / (4 MeV/c²) 00 00 00 00 00 000

200

lln

Belle II Ldt = 362 fb⁻

• $A_{CP}(K^*\gamma) \equiv \left(\Gamma_{\overline{K}^*\gamma} - \Gamma_{K^*\gamma}\right) / \left(\Gamma_{\overline{K}^*\gamma} + \Gamma_{K^*\gamma}\right)$ = $(-2.3 \pm 1.9 \pm 0.3)\%$

•
$$\Delta A_{CP} \equiv A_{CP}^{K^{*0}\gamma} - A_{CP}^{K^{*+}\gamma}$$

= $(2.2 \pm 3.8 \pm 0.7)\%$

•
$$\Delta_{0+} \equiv (\Gamma_{K^{*0}\gamma} - \Gamma_{K^{*+}\gamma}) / (\Gamma_{K^{*0}\gamma} + \Gamma_{K^{*+}\gamma})$$
$$= (\mathbf{5} \mathbf{1} \pm \mathbf{2} \mathbf{.} \mathbf{0} \pm \mathbf{1} \mathbf{.} \mathbf{0} \pm \mathbf{1} \mathbf{.} \mathbf{1}) \%$$

 3^{rd} error for Δ_{0+} is due to f^{+-}/f^{00}

Good agreement with the evidence in Belle $\Delta_{0+}^{\text{Belle}} = (6.2 \pm 1.5 \pm 1.3)\%$

S. Watanuki @B physics seminar (KEK)

Background

5.2

5.28 5.2 M_m [GeV/c²]

Radiative $B \rightarrow \rho \gamma$

- The $B \rightarrow \rho \gamma$ decay occurs via another FCNC **process,** $b \rightarrow d\gamma$
 - BR is one order of magnitude less than $K^*\gamma$
 - Independent NP search from $B \rightarrow K^* \gamma$
- Possibility of hidden goldmine

Study with Belle (711/fb) + Belle II (362/fb)

> BR, A_{CP} , and isospin asymmetries $(A_I = (\Gamma_{\rho^0\gamma} - \Gamma_{\rho^+\gamma})/(\Gamma_{\rho^0\gamma} + \Gamma_{\rho^+\gamma}))$

In SM, A_I should be close to that of B → K^{*}γ
− ~2σ tension for
$$A_I^{W.A.} = (30^{+16}_{-13})\%$$
 to date

Preliminary results

- $BR(\rho^+\gamma) = (13.1^{+2.0+1.3}_{-1.9-1.2}) \times 10^{-7}$
- $BR(\rho^0\gamma) = (7.5 \pm 1.3^{+1.0}_{-0.8}) \times 10^{-7}$
- $A_I = (10.9^{+11.2}_{-11.7} + 6.8 + 3.8)_{-11.7} + 6.2 + 3.9)_{-11.7} + 5.9$ _{-11.7} + 5.9_{-11.7} +
- $A_{CP} = (-8.2 \pm 15.2^{+1.6}_{-1.2})\%$

<u>Conclusion</u>

- Consistent with world average and SM prediction
 - Especially, the A_I is close to $B \to K^* \gamma$
- World best precision is achieved
- S. Watanuki @PASCOS 2024 submitted to PRD

$\frac{2}{B_{\text{BELLE}}} \xrightarrow{B_{\text{BELLE}}} \text{Double-radiative } B^0 \to \gamma \gamma$

In the SM, the decay is allowed only with loop diagrams;

$$B_{SM}(B^0 \to \gamma \gamma) = (1.4^{+1.4}_{-0.8}) \times 10^{-8}$$

- Highly helicity suppressed in comparison to $B_s^0 \rightarrow \gamma \gamma$ (factor $|V_{td}|^2 / |V_{ts}|^2 \sim 0.04$)
- ➢ NP effect in the loop can enhance the BF
 - Similar to $B \rightarrow X_{s/d}\gamma$ with Wilson coefficient C₇
 - Complementary test of C₇ for different contribution of 4-quark operators

Exp.	U.L.	
Belle (104/fb)	$< 6.2 \times 10^{-7}$	
BaBar (426/fb)	$< 3.2 \times 10^{-7}$	

To be updated by Belle + Belle II joint → More than 1/ab

Events / (4 GeV/C) 25 05 25 05 25 12

Events /

0 <u>-</u> 5.24

4 MeV

5.24

Results

$\frac{2}{M_{BM}}$ Time-dependent CPV of $B^0 \to K_S^0 \pi^0 \gamma^{11}$

- New physics which enhances the right-handed photon process can allow a non-zero TDCPV for $B^0 \rightarrow V\gamma$
- The NP effect can be independent between $V = K^{*0}$ and $V = \rho^0$

Interference is suppressed in the SM Non-zero TDCPV indicates NP

 C'_7 (suppressed in SM)

 $b \rightarrow s\gamma S_{CP}$

2021

λ	HFLAV correlated average		0.74 +0.72 +0.10
K _s ρ ⁰ γ	BABAR PRD 93 (2016) 052013 Belle PRL 101 (2008) 251601	HFLAV	$-0.18 \pm 0.32 ^{+0.06}_{-0.05}$ $0.11 \pm 0.33 ^{+0.05}_{-0.09}$
Ks'n γ	BABAR PRD 79 (2009) 011102 Belle 4 PR D97 (2018) 092003 Average 4 HFLAV correlated average	Moriond 20.8	$-0.18_{-0.46}^{+0.49} \pm 0.12$ $-1.32 \pm 0.77 \pm 0.36$ -0.49 ± 0.42
Κ _s π ⁰ γ	BABAR PRD 78 (2008) 071102 Belle PRD 74 (2006) 111104(R) Average HFLAV correlated average	HFLAV Monord 2018	$\begin{array}{c} -0.17 \pm 0.26 \pm 0.03 \\ -0.10 \pm 0.31 \pm 0.07 \\ -0.15 \pm 0.20 \end{array}$
Κ* γ	BABAR PRD 78 (2008) 071102 Belle PRD 74 (2006) 111104 Average HFLAV correlated average	HFLAV Morton d 20 8	$\begin{array}{c} \text{-0.03} \pm 0.29 \pm 0.03 \\ \text{-0.32} \substack{+0.36 \\ -0.33} \pm 0.05 \\ \text{-0.16} \pm 0.22 \end{array}$

S. Watanuki @PASCOS 2024

Summary

- Reported the EWP analyses in Belle and Belle II
 - Some studies use Belle + Belle II data to achieve the current best precision
 - No evidence for new physics so far
- Many world-leading results
 - 3.5 σ evidence for $B^+ \to K^+ \nu \bar{\nu}$
 - World best precision for $B \rightarrow \rho \gamma$, $B \rightarrow \gamma \gamma$ by Belle + Belle II
 - Most of them are unique to Belle / Belle II for the final states with neutral particles or missing energy
- Thanks to many updates, some studies in Belle II showed comparable (or rather better) precision than Belle
- ➢ Please look forward the new results from Belle II run2!