

42nd International Conference on High Energy Physics

Measurement of the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}$ cross section in the centre-of-mass range 0.62 to 3.5 GeV at Belle II

Yuki Sue, Nagoya University on behalf of the Belle II collaboration 18 July 2024 arXiv:2404.04915

Present status of the muon (g-2) SM calculation

- \Box 5 σ (or 1-2 σ) difference with new direct measurements by Fermilab experiment
- Non-negligible uncertainty in theoretical predictions
- □ Major uncertainty (~80%) is derived from Hadronic Vacuum Polarization (HVP) term
- Validation by independent experiments is important to understand HVP situation

Cross section measurements of exclusive channels

Previous measurements for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Previous measurements for $e^+e^-{\rightarrow}\pi^+\pi^-\pi^0$

Radiative return method

□ Use a process associated with energetic ISR emission

■ Measure the cross section e⁺e⁻→hadrons in the energy range 0.4-3.5 GeV in e⁺e⁻ collision at 10.58 GeV

Belle II detector

Trigger & DAQ

New calorimeter-based trigger enables light-hadron cross section measurements

$$\Box$$
 Target : $\delta a_{\mu}^{3\pi}/a_{\mu}^{3\pi} \sim 2\%$ with 191 fb⁻¹ data

Key items

- Robust event selection to extract $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$
- **Background suppression and background determination (** \leq 1% at ω)
- Precise determination of the efficiency in $\leq 1\%$
- Unfolding the spectrum to remove detector resolution effects

Blind analysis

The data are examined after all selections and corrections are determined.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR} \text{ selection}$

Reconstruct two tracks + three photons : $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR} \rightarrow \pi^+\pi^-\gamma\gamma\gamma_{ISR}$

Signal extraction

D Fit $M(\gamma\gamma)$ in each $M(3\pi)$ bin to extract π^0 signal

Test residual backgrounds using data control samples

Efficiency $\varepsilon = \varepsilon_{\text{MC}} \int \left[(1 + \eta_i) \right]$ Data-MC correction $\eta_i \sim O(1)\%$

1st order signal efficiency is estimated using MC of the x10 larger statistics
 Possible differences between data and MC are studied in data-driven way using several control samples

	0.2		Sources	Efficiency correction η_i (%)
Signal Efficiency	0.18	Belle II Simulation	Trigger	-0.1±0.1
	0.16		ISR photon detection	0.2±0.7
	0.12	MC signal efficiency : 7-9%	Tracking	-1.4±0.8
	0.1 0.08		π^0 detection	-1.4±1.0
	0.06		Background suppression	-1.9±0.2
	0.04		χ^2 distribution	0.0±0.6
	0.02	0.5 1 1.5 2 2.5 3 3.5 4	Total correction	-4.6±2.0
		M_{2-}^{gen} (GeV/c ²)		

Systematic uncertainty for $e^+e^-{\rightarrow}\pi^+\pi^-\pi^0$ cross section

□ Luminosity is measured with Bhabha events and confirmed with e⁺e⁻→γγ and μ⁺μ⁻ processes □ Major systematic uncertainty comes from MC generator, and π⁰ efficiency

Source	Systematic uncertainty (%)		
Oburce	√s < 1.05 GeV²	√s > 1.05 GeV	
Trigger efficiency	0.1	0.2	
ISR photon efficiency	0.7	0.7	
Tracking efficiency	0.8	0.8	
π ⁰ efficiency	1.0	1.0	
χ^2 criteria efficiency	0.6	0.3	
Background suppression efficiency	0.2	1.9	
MC generator (due to missing NNLO MC)	1.2	1.2	
Radiative correction	0.5	0.5	
Integrated luminosity	0.6	0.6	
Total systematics	2.2	2.8	

Result: cross section at the ω resonance

 ω resonance has a large cross section and a large contribution to a_u(3π)

13

Measured cross section at ω is 5-10% higher than BABAR, SND, and CMD-2

Result: cross section in higher energy

 \square Cross section in $\sqrt{s'} > 1.05$ GeV is in good agreement with BABAR result

Contribution to 3π LO HVP using solely our result

15

 $a_{\mu}^{\text{LO,HVP,3}\pi}(0.62-1.8 \text{ GeV}) = (48.91 \pm 0.25_{\text{stat}} \pm 1.07_{\text{syst}}) \times 10^{-10}$

	а _µ (3п)×10 ¹⁰	Difference×10 ¹⁰		
BABAR alone [<u>PRD 104, 11 (2021)</u>]	45.86 ± 0.14 ± 0.58	3.2±1.3 (6.9%)		
Global fit* [<u>JHEP 08, 208 (2023)</u>]	45.91 ± 0.37 ± 0.38	3.0±1.2 (6.5%)		
* Not includes BESIII preliminary result [arXiv:1912:11208]				

1 6.5% higher than the global fit result with 2.5 σ significance **1** This difference $3x10^{-10}$ corresponds 10% of $\Delta a_{\mu} = a_{\mu}(Exp) - a_{\mu}(SM) = 25x10^{-10}$

Summary

□ Cross-section measurements are ongoing at the SuperKEKB/Belle II experiment

- High trigger efficiency well determined by the comparison of independent trigger mode rates
- \square We measured the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}$ cross section with systematic uncertainty of 2.2%
 - This is the first e⁺e⁻→hadrons cross section measurement at Belle II
 - Experimental systematic uncertainty is well-understood
 - The remaining largest uncertainty is from the MC generator due to missing NNLO QED generator
- **Ο** Our results are about 2.5σ greater than BABAR and global fit

•
$$a_{\mu}^{\text{LO,HVP,}}(3\pi) = (48.91 \pm 0.25_{\text{stat}} \pm 1.07_{\text{syst}}) \times 10^{-10}$$

Submitted to PRD [arXiv:2404.04915]

Next: $e^+e^- \rightarrow \pi^+\pi^-$ at Belle II

- □ Further analyses of the hadronic channels via ISR are on going □ Target precision for $e^+e^- \rightarrow \pi^+\pi^-$: 0.5% of $a_\mu(2\pi)$
- Trying to follow BABAR methods as a baseline
- Systematics uncertainty dominant analysis
 - BABAR : 232 fb⁻¹ [PRD 86 032013 (2012)]
 - ■We can use a larger dataset to control systematic uncertainties
- Design of data-driven efficiency corrections for tracking, trigger and π/μ/K ID is ongoing

18

Background suppression (1)

- A) Background not containing real π^0 : $e^+e^- \rightarrow e^+e^-\gamma$, $\pi^+\pi^-\gamma$, $\mu^+\mu^-\gamma$
 - Pion/Electron ID > 0.1
 - $M^{2}_{recoil}(\pi^{+}\pi^{-}) > 4 \text{ GeV}^{2}/c^{4}$
- B) Charged kaon : $e^+e^- \rightarrow K^+K^-\pi^0\gamma$
 - Pion/Kaon ID $L(\pi/K) > 0.1$
- C) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$

19

- Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ (with additional π^0)
- 4C kinematic fit under π⁺π⁻π⁰π⁰γ (2π5γ) hypothesis, and $\chi^2_{4C}(2π5γ) > 30$

$\chi^{2}_{4C}(2\pi 3\gamma)$ versus $\chi^{2}_{4C}(2\pi 5\gamma)$

Background suppression (2)

- D) Background not containing real ISR : Non-ISR qqbar (dominated by $\pi^+\pi^-\pi^0\pi^0$) and $\tau^+\tau^$
 - i. $M(\pi^{\pm}\gamma_{ISR}) > 2 \text{ GeV/c}^2$ to reduce high momentum $\rho^{\pm} \rightarrow \pi^{+}\pi^{0}$
 - ii. $M(\gamma_{ISR}\gamma)$ cut to reduce ISR candidate from π^0 -decay photon
 - iii. Cluster shape cut to reduce ISR-like photon in which two photons from of π^0 are merged

Background estimation

Estimate by determining a mass-dependent data-MC scale factor using a control sample.

$$N_{\text{Signal}}^{\text{data}} = N_{\text{Signal}}^{\text{MC}} \cdot \frac{N_{\text{Control}}^{\text{data}}}{N_{\text{Control}}^{\text{MC}}}$$

- $\square e^+e^- \rightarrow K^+K^-\pi^0\gamma : \text{Invert } \pi/K\text{-ID } L(\pi/K) > 0.1 \Rightarrow L(\pi/K) < 0.1$
- $\square e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma : \text{Reconstruct } \pi^+\pi^-\pi^0\pi^0\gamma \text{ and select } \chi^2(4\pi\gamma) < 30$

 \square Non-ISR qqbar : 0.10 < M($\gamma_{ISR}\gamma)$ < 0.17 GeV / large cluster second moment

Final-state radiation background

- Difficult to reject FSR background or extract control sample
- Estimate FSR background using pQCD prediction based on the BABAR previous analysis [PRD112003]

Unfolding

□ The signal spectrum is unfolded to mitigate the effect of detector resolution

- Typically with a mass resolution around 7-10 MeV/c²
- The data-MC difference of mass bias and resolution is determined by a Gaussian convolution fit to the ω, Φ, and J/ψ resonances
 - Mass bias of 0.5-1.5 MeV/c², and resolution of about 1 MeV/c² is corrected

Trigger efficiency

24

- □ ISR events are triggered by the calorimeter
- □ The efficiency can be measured by using the events triggered independently by the tracker **□** Efficiency for energetic ISR in barrel region: 99.9%
- The uncertainty related to trigger is small, 0.1%
- This also benefits other final-state measurements
 - \rightarrow Reference: triggered by track trigger

3.0

Tracking efficiency

25

 \blacksquare Tracking efficiency for pions is studied with the e⁺e⁻ \rightarrow t⁺t⁻ process.

Data-MC differences are confirmed to be small with 0.3% uncertainty per track.

Tracking efficiency: Track loss

Track loss due to shared hits on the drift chamber is confirmed using the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$

D Define $\Delta \varphi \coloneqq \varphi(\pi^+) - \varphi(\pi^-)$

D The Inefficiency due to track loss is given by $f = \frac{N(\Delta \phi^2)}{2}$

$$f = \frac{N(\Delta \varphi < 0) - N(\Delta \varphi > 0)}{2N(\Delta \varphi < 0)}$$

 \Box In total, the correction factor for tracking is (-1.4 \pm 0.8)%.

The track loss is 5.0% in data and 4.0% in MC

Dependency on no. of CDC hits and duplicated tracks are also studied.

ISR photon detection efficiency

□ Photon detection efficiency is measured using e⁺e⁻→μ⁺μ⁻γ events
 □ Taking a match between a ECL cluster and the missing momentum of dimuon system
 □ Efficiency is in good agreement with 0.7% systematic uncertainty

π^0 efficiency correction

 \Box Accurate evaluation of π^0 efficiency in e⁺e⁻ experiment is a challenging task.

Exclusive processes that include a π^0 are limited.

 \Box Evaluate efficiency using the e⁺e⁻ $\rightarrow \omega \gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ events.

 $\frac{N(\text{Full reconstruction}: \gamma_{\text{ISR}}\pi^+\pi^-\pi^0)}{N(\text{Partial reconstruction}: \gamma_{\text{ISR}}\pi^+\pi^-)} \longrightarrow \text{Count } \omega \rightarrow \pi^+\pi^-\pi^0 \text{ decay without using } \pi^0 \text{ information.}$ $\varepsilon_{\pi^0} =$ 10 MeV/c² **Belle II** Preliminary $8000 \vdash \int L dt = 191 \text{ fb}^{-1}$ π^+ Data $\pi^+\pi^-\pi^0\gamma$ 6000 **Recoil momentum** Entries per 4000 Background of $\pi^+\pi^-\gamma_{ISR}$ 2000 ******** Pull <mark>┥ ┿╴╖╖┿╅[╋]╪╪╪_{╋┪╴}┿╅┿┿╈╴╴╻╻╅</mark> e^+ -5 **e**⁻ 06 0.65 0.75 0.8 0.85 0.9 $M(\pi^{+}\pi^{-}\pi_{\rm rec}^{0})$ (GeV/c²) $M^{2}(\pi^{+}\pi^{-}\pi^{0}_{\text{recoil}}) = (p_{\pi^{+}} + p_{\pi^{-}} + p_{\text{recoil}})^{2}$ \blacksquare π^0 momentum p_{recoil} is determined by kinematic fit to $\pi^+\pi^-\gamma$ with hypothesis that recoil mass equals π^0 mass ISR ph

0.95

 \Box Accurate evaluation of π^0 efficiency in e⁺e⁻ experiment is a challenging task.

Exclusive processes that include a π^0 are limited.

 \Box Evaluate efficiency using the e⁺e⁻ $\rightarrow \omega\gamma \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ events.

 $\Box \varepsilon_{\pi^0}$ are independently evaluated by the data and MC Data/MC ratio = 0.986 ± 0.006_{stat}

 \Box The systematic uncertainty related to π^0 is 1.0% The uncertainty is evaluated by variations of the M(yy) signal pdf, background pdfs, and selections

29

Background suppression efficiency

Estimated by the ratio of signal yield before/after the criteria
 It is evaluated using ω and Φ, J/ψ resonances of good S/N
 In M(3π) < 1.05 GeV/c², efficiency is (89.5±0.2)% for data
 Data-MC difference is ε_{data}/ε_{MC} -1 = (-1.90±0.20)%
 M(3π) > 1.05 GeV/c² : the number of J/ψ was obtained by M(3π) fitting
 Data-MC difference is ε_{data}/ε_{MC} -1 = (-1.78±1.85)%
 Error is due to statistical errors in the sample

$\chi 2$ selection efficiency

- \square ISR and tracks χ^2 -criteria efficiency is confirmed using $e^+e^- \rightarrow \mu^+\mu^-\gamma$ sample
- □ Confirm effects from differences in position, momentum, and energy of ISR and tracks
 - □ Agreement confirmed within ±0.6% uncertainty
- Dependence on multi-ISR photon calculations is discussed on the next page

- Although a one-ISR photon emission process is set as the signal, in reality there are processes with multiple photon emissions.
- Two effects need to be considered from the existence of multiple photons:
 A) Effective integrated luminosity L_{eff} (radiative correction): 0.5% unc.
 - B) χ^2 selection efficiency due to ISR photon calculations in generator: 1.2% unc.

Higher-order ISR effects: A) radiative correction

□ Using the LO ISR analytic function, ISR luminosity with the integrated luminosity $L_{int} = 191 \text{ fb}^{-1}$ is $L_{eff} = \frac{2\sqrt{s'}}{s} \frac{\alpha}{\pi} \left(\frac{s^2 + s'^2}{s(s-s')} \ln \frac{1 + \cos\theta}{1 - \cos\theta} - \frac{s-s'}{s} \cos\theta \right) L_{int}$

The ratio of the ISR emission probability including higher-order effects (LO+NLO+...) to LO is called radiative correction

□ Higher order (LO+NLO) effects are calculated by MC generator, PHOKHARA, radiative correction is 1.008-1.013 depending on hadronic energy √s'

Higher-order ISR effects: B) χ2 efficiency

20% excess of the fraction of NLO (two ISR) events on the MC generator is reported by <u>BABAR</u>

- □ This data-MC difference was also observed and verified by the Belle II data.
- \square Signal efficiency changes because most NLO events are rejected by $\chi 2$ criteria.
- Efficiency change in this case was evaluated on a simulation basis.
- \square The χ 2 efficiency is underestimated by (2.4 \pm 0.7)%.

 \square NNLO (three ISR) calculations not included in the generator, but $(3.4\pm0.4)\%$ observed by BABAR

■ Efficiency change due to NNLO is estimated to be 1.9% in the opposite direction of the NLO effect

□ In conclusion,

- No correction is assigned
- 1.2% systematic uncertainty is accounted for as MC generator-derived error

 \Box 0.7%(NLO excess error) \oplus 0.95% (half of NNLO effect)

= 1.2%

How to change the energies in e⁺e⁻ experiment

• We want to scan the hadronic energy from $\sqrt{s} \sim 0.5$ to ~ 3 GeV.

- Larger dataset at fixed energy
- Lower background
- Systematics depending on energy points
- Dynamic change of efficiency

- Accessible to entire energies with a single dataset
- □ Flat acceptance over a broad energy range
- Only 10% ISR emitted in detector acceptance
- Larger background from higher energies
- Energy resolution due to detector resolution

Major differences from BABAR 2021 measurement

- □ In quite a few respects, this analysis follows the BABAR method
- Systematic uncertainty is still nearly twice as large
 - NNLO generator is needed

	Belle II	BABAR (2021)
Dataset	191 fb ⁻¹	469 fb ⁻¹
Combinatorial yy background	M(yy) fit	Negligibly small(?)
ISR energy in kinematic fit	Used	Unused
Generator	PHOKHARA	AfkQed
Generator uncertainty	1.2%	-
Detection efficiency uncertainty	1.6%	1.1%
Integrated luminosity	0.6%	0.3%
Total systematic uncertainty for $a_{\mu}(3\pi)$	2.2%	1.3%