Measurements of *CP* violation in B decays at Belle II

Yu Nakazawa (KEK) **ICHEP 2024** July 20th, 2024

Belle II @ SuperKEKB

Asymmetric e⁺-e⁻ collider ($\sqrt{s} = 10.58$ GeV)

· $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$

Four-momenta of B are well known.

Determination of the decay position allows time-dependent analysis.

ICHEP 2024 (July 20th, 2024)

Luminosity	Design	Accomplish
Integrated	50 ab ⁻¹ (Belle x50)	531 fb ⁻¹
Peak	6.5 x 10 ³⁵ /cm ² /s	4.7 x 10 ³⁴ /c

K_L and µ Detection K_{L^0} p resolution: 15 MeV μ identification eff.: ~90%

Vertex Detector vertex resolution: 15 µm

Central Drift Chamber

spatial resolution: 100 µm dE/dx resolution: 5% P_T resolution: 0.4%

EM Calorimeter, Csl(Tl) energy resolution: 1.6%-4%

Particle Identification K eff.: 90%, fake π rate: 5%

Determination of CKM parameters at Belle II

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \qquad \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = (22)$$

$$\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) = (8)$$

$$\phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) = (6)$$

Precise test of SM over constraint the unitarity triangle (UT).

- Loop amplitudes provide sensitive probe to new physics (NP). e.g.) $B^0-\overline{B}^0$ mixing \leftarrow Time-dependent CP asymmetry measurement
- goal: accurate measurement of all UT angles and sides

Belle II at e⁺-e⁻ collider:

clean environment, quantum entangled BB pairs, high tagging efficiency, neutral particles in the final states

ICHEP 2024 (July 20th, 2024)

Decay mode

 $B^0 \to J/\psi \pi^0$ $(b \to c\bar{c}d)$ ϕ_1 $\phi_1^{\text{eff}}, \text{ NP}$ $B^0 \to \eta' K_S$ $(b \rightarrow s\bar{s}s)$ $B^0 \to K_S \pi^0 \gamma \quad (b \to s \gamma)$ NP $B^0 \to \pi^0 \pi^0$ $(b \rightarrow u \bar{u} d)$ ϕ_2

Today's contents

ϕ_3 : Talk by VISMAYA V S

3

http://ckmfitter.in2p3.fr/www/html/ckm_main.html

$$\begin{aligned} \mathbf{Time-Dependent} \ \mathbf{CF} \\ A_{CP}^{B \to f}(\Delta t) &\equiv \frac{\Gamma(B^0(\Delta t) \to f) - \Gamma(\bar{B}^0(\Delta t) \to f)}{\Gamma(B^0(\Delta t) \to f) + \Gamma(\bar{B}^0(\Delta t) \to f)} \\ &= \mathbf{S} \cdot \sin(\Delta m_d \Delta t) - \mathbf{C} \cdot \cos(\Delta m_d \Delta t) \\ &\text{mixing-induced CPV} \quad \text{Direct CPV} \\ S_{CP} &= |\sin(2\phi_i^{\text{eff}})| \qquad A_{CP} &= -C_{CP} \end{aligned}$$

- Signal extraction using beam-constraint variables, and BDT to discriminate qq backgrounds
- Excellent vertex resolution: $\sigma_z \sim 26/50 \ \mu m$ (CP/tag side)
- Graph-neural-network flavor tagging (GFlaT)
- · Updated from a category-based algorithm
- Looks at additional correlations of particles information (charge of lepton/hadron, high-p tracks)
- Perfomance: ε_{tag}^{eff} (CB) = (31.7 ± 0.5 ± 0.4)% $\varepsilon_{\text{tag}}^{\text{eff}}$ (GFIaT) = (37.4 ± 0.4 ± 0.3)%

ICHEP 2024 (July 20th, 2024)

 $B^0 \to J/\psi \pi^0$

- Mediated by $b \rightarrow c\bar{c}d$ transition, probe for loop contributions to $b \rightarrow c\bar{c}s$ for determination of ϕ_1
- Apply GFlaT and 3 BDTs for fake photon, beam background, and $q\bar{q}$ suppression
- Fit ΔE and m($\ell \ell$) for background subtraction (separately for ee and $\mu\mu$); Fit Δt for CPV-parameter extraction

 $BF = (2.00 \pm 0.12 \pm 0.10) \times 10^{-5}$ $S_{CP} = -0.88 \pm 0.17 \pm 0.03$ $C_{CP} = 0.13 \pm 0.12 \pm 0.03$

• First 5σ observation of mixing-induced CP in this mode

ICHEP 2024 (July 20th, 2024)

$B^0 \to \eta' K_S$

- Gluonic penguin with $b \rightarrow sq\bar{q}$
- Sensitive to the new physics in the decay
- Golden mode: Relatively large BF and limi contribution from tree amplitudes.
- In SM, $\Delta S = S(\eta' K_S) sin(2\phi_1) \sim 0.01 \pm$
- Reconstruct $\eta' \rightarrow \eta_{(\gamma\gamma)}\pi\pi$ and $\eta' \rightarrow \rho_{(\pi)}\pi$ (Belle II specialities) etry
- Fit to ΔE , M_{bc} , and $q\bar{q}$ suppression classify -0.25
- $S = 0.67 \pm 0.10 \pm 0.04$ Results: $C = -0.19 \pm 0.08 \pm 0.03$

<u>HFLAV</u>: $S = 0.63 \pm 0.06$, $C = -0.05 \pm 0.04$

- Agreement with the world average
- Comparable precision with Belle/BaBar

6

64

0

- Vertex from $K_S \rightarrow \pi \pi$ ar
- Fit to M_{bc} and ΔE for s
- Measured separately fc.

 $M_{K_{\rm c}^0\pi^0} \in (0.8, 1.0) \ {\rm GeV/c^2}$ $S = 0.00^{+0.27}_{-0.26} \pm 0.03$

- · Agreement with the world average and SM

Towards $\phi_2/\alpha: B^{0} \rightarrow \pi^{0} \pi^{0}$

- Tree-level b—uūd processes allow extraction of ϕ_2
 - Interference with penguin amplitudes
 - · Statistical limitation due to color suppression in tree diagram
- Experimentally challenging: 4 photons with no tracks
- Update on BF and ACP using full Run-1 statistics with
 - new GNN-based flavor tagger
 - BDT dedicated for photon selection and $q\bar{q}$ suppression
 - reduction of systematic uncertainties
- Signal extraction by simultaneous fit
 - · ΔE , M_{bc}, BDT_{qq} output (C), transformed wrong tag probability
- $BF = (1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$ Results: $A_{CP} = 0.06 \pm 0.30 \pm 0.06$
 - BF: world best, ACP: comparable with the world average

ICHEP 2024 (July 20th, 2024)

Summary

- violation in B decays.
- Thanks to the GNN-based classifier, the flavor-tagging efficiency is improved by 18%. ($B^0 \rightarrow J/\psi \pi^0$, $B^0 \rightarrow \pi^0 \pi^0$)
- Four recent results, with one newly presented at ICHEP. $B \rightarrow J/\psi \pi^0$ BF = (2.00 ± 0.12 ± 0.10) x 10⁻⁵
 - $S_{CP} = -0.88 \pm 0.17 \pm 0.03$
 - $C_{CP} = 0.13 \pm 0.12 \pm 0.03$

Belle II is now providing new and updated results on time-dependent CP

Today's contents Decay mode Target $B^0 \to J/\psi \pi^0 \qquad (b \to c\bar{c}d)$ new ϕ_1 $B^0 \to \eta' K_S \qquad (b \to s\bar{s}s)$ $\phi_1^{\text{eff}}, \text{NP}$ $B^0 \to K_S \pi^0 \gamma \quad (b \to s \gamma)$ NP **updated** $B^0 \to \pi^0 \pi^0$ $(b \to u \bar{u} d)$ ϕ_2

ICHEP 2024 (July 20th, 2024)

Backup

Time-Dependent CPV analysis at Belle II

$$A_{CP}^{B \to f}(\Delta t) \equiv \frac{\Gamma(B^{0}(\Delta t) \to f) - \Gamma(\bar{B}^{0}(\Delta t) \to f)}{\Gamma(B^{0}(\Delta t) \to f) + \Gamma(\bar{B}^{0}(\Delta t) \to f)}$$
$$= S \cdot \sin(\Delta m_{d} \Delta t) - C \cdot \cos(\Delta m_{d} \to f)$$
mixing-induced CPV Direct CPV
$$S_{CP} = \sin(2\phi_{i}^{\text{eff}}) \qquad A_{CP} = -C_{CP}$$

- B_{CP}: fully reconstructed CP eigenstate **B**_{tag}: vertex and flavor information
- Signal extraction
 - Two variables using the collision energy
 - Multivariate (BDT) classifier to discriminate continuum (qq) backgrounds using event-shape variables
- **CPV-paramenter extraction:**
 - excellent vertex resolution $\sigma_z \sim 26/50 \,\mu\text{m}$ (CP/tag side) ^{-0.3} -0.2 -0.1

ICHEP 2024 (July 20th, 2024)

$sin(2\phi_1/\beta)$ from B->J/ ψ Ks (b->ccd) $x_{iv:2}$

- Golden channel, almost background free
- Updated results using GFIaT
- Staging approach
 - · Fit ΔE distribution to subtract background
 - · Fit background-subtracted Δt distribution to extract CPV parameters.
- Results: $S = 0.724 \pm 0.035 \pm 0.014$ $C = -0.035 \pm 0.026 \pm 0.013$
- Statistical uncertainties 8% smaller compared to the category-based flavor tagging.

12

Systematics: $J/\psi \pi^0$

Table II. Relative systematic uncertainties on the branching fraction.

Source	Relative uncertainty on $BF[\%]$	Source	$\overline{C_{CP}}$	$-\eta_{J}$
π^0 efficiency	3.7	Calibration with $B^0 \to D^{*-} \pi^+$	0.017	(
Lepton ID	0.4	Signal extraction fit	0.003	
BDT	0.3	Background composition	0.005	
Tracking Efficiencies	0.5	Backgrounds Δt shapes	< 0.001	
PDG inputs	0.4	Fit bias	0.010	
$N(B\overline{B})$	1.4	Multiple candidates	< 0.001	
f^{+-}/f^{00}	2.5	Detector mis-alignment	0.002	
Fixed parameters	0.7	Tag-side interference	0.027	
Backgrounds composition	0.4	$ au_{B^0}$ and Δm_d	< 0.001	<
Multiple candidates	0.5	Total systematic uncertainty	0.034	
Total systematic uncertainty	4.9	Statistical uncertainty	0.124	
Statistical uncertainty	6.1			

Table III. Systematic uncertainties on the CP asymmetries.

Systematics: $\pi^0\pi^0$

Source

 π^0 efficiency

 $\Upsilon(4S)$ branching fraction Continuum-suppression e *BB*-background model Sample size $N_{B\bar{B}}$ Signal model Continuum-background r Wrong-tag probability ca Total systematic uncertai

Statistical uncertainty

	${\mathcal B}$	\mathcal{A}_{CP}
	8.6~%	n/a
as $(1 + f^{+-}/f^{00})$	2.5~%	n/a
efficiency	1.9~%	n/a
	1.7~%	0.034
	1.5~%	n/a
	1.2~%	0.021
model	0.9~%	0.025
libration	n/a	0.008
inty	9.6~%	0.048
	15.9~%	0.303

